Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 14:11:584.
doi: 10.3389/fpls.2020.00584. eCollection 2020.

Hydrogen Sulfide Maintained the Good Appearance and Nutrition in Post-harvest Tomato Fruits by Antagonizing the Effect of Ethylene

Affiliations

Hydrogen Sulfide Maintained the Good Appearance and Nutrition in Post-harvest Tomato Fruits by Antagonizing the Effect of Ethylene

Gai-Fang Yao et al. Front Plant Sci. .

Abstract

Hydrogen sulfide (H2S) could act as a versatile signaling molecule in delaying fruit ripening and senescence. Ethylene (C2H4) also plays a key role in climacteric fruit ripening, but little attention has been given to its interaction with H2S in modulating fruit ripening and senescence. To study the role of H2S treatment on the fruit quality and nutrient metabolism, tomato fruits at white mature stage were treated with ethylene and ethylene plus H2S. By comparing to C2H4 treatment, we found that additional H2S significantly delayed the color change of tomato fruit, and maintained higher chlorophyll and lower flavonoids during storage. Moreover, H2S could inhibit the activity of protease, maintained higher levels of nutritional-related metabolites, such as anthocyanin, starch, soluble protein, ascorbic acid by comparing to C2H4 treatment. Gene expression analysis showed that additional H2S attenuated the expression of beta-amylase encoding gene BAM3, UDP-glycosyltransferase encoding genes, ethylene-responsive transcription factor ERF003 and DOF22. Furthermore, principal component analysis suggested that starch, titratable acids, and ascorbic acid were important factors for affecting the tomato storage quality, and the correlation analysis further showed that H2S affected pigments metabolism and the transformation of macromolecular to small molecular metabolites. These results showed that additional H2S could maintain the better appearance and nutritional quality than C2H4 treatment alone, and prolong the storage period of post-harvest tomato fruits.

Keywords: ethylene; hydrogen sulfide; nutritional quality; post-harvest ripening; tomato fruits.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
The phenotypic change of post-harvest tomato fruits with C2H4 or C2H4-H2S treatment. (A) The phenotypic change of post-harvest tomato fruits. (B) The color parameter a*/b* value changes with C2H4 or C2H4-H2S treatment during tomato post-harvest storage. a* value represents a range from magenta to green, and b* value represents a range from yellow to blue. Values are the means ± SD (n = 3). The experiments and following ones were carried out at room temperature and 85-90% relative humidity. The symbols * and ** stand for significant difference between C2H4 and C2H4-H2S at p < 0.05 and p < 0.01, respectively.
FIGURE 2
FIGURE 2
Effects of C2H4 and C2H4-H2S on the contents of total chlorophyll (A), chlorophyll a (B), chlorophyll b (C) in post-harvest tomato. Data are presented as means ± SD (n = 3). * and ** in this figure and following ones stand for a significant difference between C2H4 treatment and C2H4-H2S co-treatment at p < 0.05 and p < 0.01, respectively.
FIGURE 3
FIGURE 3
Effect of C2H4 and C2H4-H2S on the contents of anthocyanin (A), flavonoids (B), carotenoid (C), total phenols (D). Data are presented as means ± SD (n = 3). The symbols * and ** stand for significant difference between C2H4 and C2H4-H2S at p < 0.05 and p < 0.01, respectively.
FIGURE 4
FIGURE 4
Effect of C2H4 and C2H4-H2S on activity of amylase (A), protease activity (B), content of starch (C) and content of soluble protein (D). Data are presented as means ± SD (n = 3). The symbols * and ** stand for significant difference between C2H4 and C2H4-H2S at p < 0.05 and p < 0.01, respectively.
FIGURE 5
FIGURE 5
Changes of contents of reducing sugar (A), titratable acid (B), the ratio of sugar to acid (C) and ascorbic acid (D) in C2H4 treatment and C2H4-H2S co-treatment. Data are presented as means ± SD (n = 3). The symbols * and ** stand for significant difference between C2H4 and C2H4-H2S at p < 0.05 and p < 0.01, respectively.
FIGURE 6
FIGURE 6
Changes in the gene expression of beta-amylase encoding gene BAM3 (A), UFGT73 (B), UFGT5 (C), ethylene response factor ERF003 (D), DOF22 (E), WRKY51 (F) in tomato fruit during storage after C2H4 and C2H4 + H2S treatment for 1 day. Error bars indicate standard error (n = 3). Asterisks indicate significant differences between C2H4 (ETH) and C2H4 + H2S (E-H) co-treated fruit according to the Student’s t-test (*p < 0.05, **p < 0.01).
FIGURE 7
FIGURE 7
Principal component analysis the main metabolites of post-harvest tomato fruits. PC1∼PC3 were respectively represented the contribution rate of principal components. C2H4 treatment groups were marked as “co” and square, C2H4-H2S treatment groups were marked by triangle. Metabolites are expressed by A∼N. (A) Protease activity, (B) Soluble protein, (C) Activity of amylase, (D) Starch content, (E) Reducing sugar, (F) Chlorophyll a, (G) Chlorophyll b, (H) Chlorophyll, (I) flavonoid, (J) anthocyanins, (K) Carotenoids, (L) Total phenol, (M) Titratable acid, (N) Ascorbic acid. Data represent the normalized mean values of three independent biological replicates.
FIGURE 8
FIGURE 8
Correlation analysis (A) and the heatmap (B) among the parameters of bioactive compounds. (A) The correlation analysis the relationship among bioactive compounds. Correlation coefficient was analyzed using R scripts. (B) The heatmap analyzed the change of bioactive compounds in the storage periods of tomato fruit. co- indicated control group (C2H4), co-treatment group no marked. (A) Protease activity, (B) Soluble protein, (C) Activity of amylase, (D) Starch content, (E) Reducing sugar, (F) Chlorophyll a, (G) Chlorophyll b, (H) Chlorophyll, (I) flavonoid, (J) anthocyanins, (K) Carotenoids, (L) Total phenol, (M) Titratable acid, (N) Ascorbic acid.

References

    1. Bapat V. A., Trivedi P. K., Ghosh A., Sane V. A., Ganapathi T. R., Nath P. (2010). Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv. 28 94–107. 10.1016/j.biotechadv.2009.10.002 - DOI - PubMed
    1. Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1006/abio.1976.9999 - DOI - PubMed
    1. Bureau S., Ruiz D., Reich M., Gouble B., Bertrand D., Audergon J. M., et al. (2009). Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem. 115 1133–1140.
    1. Chen Z., Qin C., Wang M., Liao F., Liao Q., Liu X., et al. (2019). Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biol. 19:285. 10.1186/s12870-019-1882-z - DOI - PMC - PubMed
    1. Dubois M., Van den Broeck L., Inzé D. (2018). The pivotal role of ethylene in plant growth. Trends Plant Sci. 23 311–323. 10.1016/j.tplants.2018.01.003 - DOI - PMC - PubMed

LinkOut - more resources