Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Aug;17(8):457-472.
doi: 10.1038/s41575-020-0304-x. Epub 2020 Jun 1.

Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis

Affiliations
Review

Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis

Prakash Ramachandran et al. Nat Rev Gastroenterol Hepatol. 2020 Aug.

Abstract

Liver disease is a major global health-care problem, affecting an estimated 844 million people worldwide. Despite this substantial burden, therapeutic options for liver disease remain limited, in part owing to a paucity of detailed analyses defining the cellular and molecular mechanisms that drive these conditions in humans. Single-cell transcriptomic technologies are transforming our understanding of cellular diversity and function in health and disease. In this Review, we discuss how these technologies have been applied in hepatology, advancing our understanding of cellular heterogeneity and providing novel insights into fundamental liver biology such as the metabolic zonation of hepatocytes, endothelial cells and hepatic stellate cells, and the cellular mechanisms underpinning liver regeneration. Application of these methodologies is also uncovering critical pathophysiological changes driving disease states such as hepatic fibrosis, where distinct populations of macrophages, endothelial cells and mesenchymal cells reside within a spatially distinct fibrotic niche and interact to promote scar formation. In addition, single-cell approaches are starting to dissect key cellular and molecular functions in liver cancer. In the near future, new techniques such as spatial transcriptomics and multiomic approaches will further deepen our understanding of disease pathogenesis, enabling the identification of novel therapeutic targets for patients across the spectrum of liver diseases.

PubMed Disclaimer

References

    1. Marcellin, P. & Kutala, B. K. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 38 (Suppl. 1), 2–6 (2018). - PubMed - DOI
    1. Hernandez-Gea, V. & Friedman, S. L. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. Mech. Dis. 6, 425–456 (2011). - DOI
    1. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019). - PubMed - DOI
    1. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397 (2015). - PubMed - DOI
    1. Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017). - PubMed - PMC - DOI

Publication types

MeSH terms

LinkOut - more resources