Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;22(7):791-802.
doi: 10.1038/s41556-020-0524-x. Epub 2020 Jun 1.

Assembly of a persistent apical actin network by the formin Frl/Fmnl tunes epithelial cell deformability

Affiliations

Assembly of a persistent apical actin network by the formin Frl/Fmnl tunes epithelial cell deformability

Benoit Dehapiot et al. Nat Cell Biol. 2020 Jul.

Abstract

Tissue remodelling during Drosophila embryogenesis is notably driven by epithelial cell contractility. This behaviour arises from the Rho1-Rok-induced pulsatile accumulation of non-muscle myosin II pulling on actin filaments of the medioapical cortex. While recent studies have highlighted the mechanisms governing the emergence of Rho1-Rok-myosin II pulsatility, little is known about how F-actin organization influences this process. Here, we show that the medioapical cortex consists of two entangled F-actin subpopulations. One exhibits pulsatile dynamics of actin polymerization in a Rho1-dependent manner. The other forms a persistent and homogeneous network independent of Rho1. We identify the formin Frl (also known as Fmnl) as a critical nucleator of the persistent network, since modulating its level in mutants or by overexpression decreases or increases the network density. Absence of this network yields sparse connectivity affecting the homogeneous force transmission to the cell boundaries. This reduces the propagation range of contractile forces and results in tissue-scale morphogenetic defects.

PubMed Disclaimer

References

    1. Levayer, R. & Lecuit, T. Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol. 22, 61–81 (2012). - PubMed
    1. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012). - PubMed
    1. Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior–posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004). - PubMed
    1. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009). - PubMed
    1. Solon, J., Kaya-Çopur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009). - PubMed

Publication types

LinkOut - more resources