Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988;49(4):259-63.
doi: 10.1159/000132673.

Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients

Affiliations

Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients

N G Jaspers et al. Cytogenet Cell Genet. 1988.

Abstract

Cultured cells from patients with ataxia telangiectasia (AT) or Nijmegen breakage syndrome (NBS) are hypersensitive to ionizing radiation. After radiation exposure, the rate of DNA replication is inhibited to a lesser extent than in normal cells, whereas the frequency of chromosomal aberrations is enhanced. Both of these features have been used in genetic complementation studies on a limited series of patients. Here we report the results of extended complementation studies on fibroblast strains from 50 patients from widely different origins, using the radioresistant DNA replication characteristic as a marker. Six different genetic complementation groups were identified. Four of these, called AB, C, D, and E (of which AB is the largest), represent patients with clinical signs of AT. Patients having NBS fall into two groups, V1 and V2. An individual with clinical symptoms of both AT and NBS was found in group V2, indicating that the two disorders are closely related. In AT, any group-specific patterns with respect to clinical characteristics or ethnic origin were not apparent. In addition to the radiosensitive ATs, a separate category of patients exists, characterized by a relatively mild clinical course and weak radiosensitivity. It is concluded that a defect in one of at least six different genes may underlie inherited radiosensitivity in humans. To facilitate research on defined defects, a complete list of genetically characterized fibroblast strains is presented.

PubMed Disclaimer

Publication types