Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are not associated with severe COVID-19 infection in a multi-site UK acute hospital trust
- PMID: 32485082
- PMCID: PMC7301045
- DOI: 10.1002/ejhf.1924
Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are not associated with severe COVID-19 infection in a multi-site UK acute hospital trust
Abstract
Aims: The SARS-CoV-2 virus binds to the angiotensin-converting enzyme 2 (ACE2) receptor for cell entry. It has been suggested that angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB), which are commonly used in patients with hypertension or diabetes and may raise tissue ACE2 levels, could increase the risk of severe COVID-19 infection.
Methods and results: We evaluated this hypothesis in a consecutive cohort of 1200 acute inpatients with COVID-19 at two hospitals with a multi-ethnic catchment population in London (UK). The mean age was 68 ± 17 years (57% male) and 74% of patients had at least one comorbidity. Overall, 415 patients (34.6%) reached the primary endpoint of death or transfer to a critical care unit for organ support within 21 days of symptom onset. A total of 399 patients (33.3%) were taking ACEi or ARB. Patients on ACEi/ARB were significantly older and had more comorbidities. The odds ratio for the primary endpoint in patients on ACEi and ARB, after adjustment for age, sex and co-morbidities, was 0.63 (95% confidence interval 0.47-0.84, P < 0.01).
Conclusions: There was no evidence for increased severity of COVID-19 in hospitalised patients on chronic treatment with ACEi or ARB. A trend towards a beneficial effect of ACEi/ARB requires further evaluation in larger meta-analyses and randomised clinical trials.
Keywords: Angiotensin-converting enzyme inhibitors; COVID-19; Disease outcome; Hypertension.
© 2020 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
Figures
Comment in
-
Surviving the first COVID-19 wave and learning lessons for the second.Eur J Heart Fail. 2020 Jun;22(6):975-977. doi: 10.1002/ejhf.1938. Epub 2020 Jul 4. Eur J Heart Fail. 2020. PMID: 32564415 Free PMC article. No abstract available.
References
-
- Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid‐19 . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720. - PMC - PubMed
-
- Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A; COVID‐19 Lombardy ICU Network . Baseline characteristics and outcomes of 1591 patients infected with SARS‐CoV‐2 admitted to ICUs of the Lombardy Region, Italy. JAMA 2020;323:1574–1581. - PMC - PubMed
-
- Hoffmann M, Kleine‐Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N‐H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271–280.e8. - PMC - PubMed
-
- Vuille‐dit‐Bille RN, Camargo SM, Emmenegger L, Sasse T, Kummer E, Jando J, Hamie QM, Meier CF, Hunziker S, Forras‐Kaufmann Z, Kuyumcu S, Fox M, Schwizer W, Fried M, Lindenmeyer M, Götze O, Verrey F. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE‐inhibitors. Amino Acids 2015;47:693–705. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
