Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun 1;11(1):42.
doi: 10.1186/s13229-020-00343-4.

Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD

Affiliations
Review

Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD

Danijela Drakulic et al. Mol Autism. .

Abstract

Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.

Keywords: Autism spectrum disorders (ASD); Copy number variants (CNVs); Human iPSCs; Neurodevelopmental disorders (NDD).

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests

Figures

Fig. 1
Fig. 1
Three domains for future expansion of iPSC studies. Increases in the number of patient iPSCs within a study (from low to high); assay complexity (from single parameter of 2D cultures to complex, multi-parameteric, high content assays on co-cultures or in 3D structured and organoid conditions) and increases in cell genetic complexity (from single CNV (monogenic) to multiple CNV and increasing polygenic (PRS) genomic background)

References

    1. Zandt F, Prior M, Kyrios M. Repetitive behaviour in children with high functioning autism and obsessive compulsive disorder. J Autism Dev Disord. 2007;37(2):251–259. - PubMed
    1. Fakhoury M. Autistic spectrum disorders: a review of clinical features, theories and diagnosis. Int J Dev Neurosci. 2015;43:70–77. - PubMed
    1. Piao Y, Hung SS, Lim SY, Wong RC, Ko MS. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med. 2014;3(7):787–791. - PMC - PubMed
    1. Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X, et al. Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One. 2010;5(6):e11373. - PMC - PubMed
    1. Seki T, Yuasa S, Fukuda K. Derivation of induced pluripotent stem cells from human peripheral circulating T cells. Curr Protoc Stem Cell Biol. 2011;Chapter 4:Unit4A 3. - PubMed

Publication types

MeSH terms

LinkOut - more resources