Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Book

Typhoid Fever

In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan.
.
Affiliations
Free Books & Documents
Book

Typhoid Fever

Jenish Bhandari et al.
Free Books & Documents

Excerpt

Typhoid fever and paratyphoid fever are clinically indistinguishable febrile multisystemic illnesses caused by Salmonella enterica serotypes Typhi (S Typhi) and Paratyphi (S Paratyphi) A, B, and C. Collectively known as enteric fever, more than 9 million people are sickened, and 110,000 die from the disease every year around the globe.[WHO. Typhoid Fact Sheet. 2023] Enteric fever is the leading cause of community-acquired bloodstream infections in South and Southeast Asia. A reportable disease in the United States and many other developed nations, enteric fever is second only to malaria as a cause of severe and sometimes life-threatening infection in travelers.[2]

Following an incubation period of 6 to 30 days, enteric fever presents insidiously with the gradual onset of fever with fatigue, anorexia, headache, malaise, and abdominal symptoms. If treatment is delayed or inadequate, meningitis, sepsis, or intestinal perforation can occur. With a history of S Typhi and S Paratyphi strains rapidly developing antimicrobial resistance with the widespread use of successive antibiotics, the recent emergence of extensively drug-resistant strains has greatly complicated treatment and raised alarms.

S Typhi and S Paratyphi are said to spread by the "4 Fs" (flies, fingers, feces, and fomites). They afflict people living or traveling in low- and middle-income countries around the globe that lack clean water, adequate sanitation, and hygiene, known collectively as WASH. Improved WASH infrastructure is the foundation for decreasing the incidence of enteric fever and other diseases spread via the fecal-oral route.

Historically, enteric fever has received less investment and attention than the "big 3" (human immunodeficiency virus/acquired immunodeficiency syndrome, tuberculosis, and malaria). However, with the specter of untreatable variants on the horizon, enteric fever control efforts have been renewed. Recently developed typhoid conjugate vaccines, improved surveillance and understanding of antimicrobial resistance patterns, and WASH initiatives have decreased the disease burden.

This activity covers the epidemiology, pathophysiology, treatment, management, complications, patient education, prevention measures, and the role of the interprofessional team in improving patient care and decreasing the burden of this disease. While several barriers to controlling this disease exist, recent advancements provide hope that the impact of enteric fevers can be limited or eliminated in the future.

PubMed Disclaimer

Conflict of interest statement

Disclosure: Jenish Bhandari declares no relevant financial relationships with ineligible companies.

Disclosure: Pawan Thada declares no relevant financial relationships with ineligible companies.

Disclosure: Muhammad Hashmi declares no relevant financial relationships with ineligible companies.

Disclosure: Elizabeth DeVos declares no relevant financial relationships with ineligible companies.

References

    1. Chattaway MA, Langridge GC, Wain J. Salmonella nomenclature in the genomic era: a time for change. Sci Rep. 2021 Apr 05;11(1):7494. - PMC - PubMed
    1. Meiring JE, Khanam F, Basnyat B, Charles RC, Crump JA, Debellut F, Holt KE, Kariuki S, Mugisha E, Neuzil KM, Parry CM, Pitzer VE, Pollard AJ, Qadri F, Gordon MA. Typhoid fever. Nat Rev Dis Primers. 2023 Dec 14;9(1):71. - PubMed
    1. Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, Thomsen R, Thomson NR, Tupua S, Vaidya K, Valcanis M, Veeraraghavan B, Weill FX, Wright J, Dougan G, Argimón S, Keane JA, Aanensen DM, Baker S, Holt KE, Global Typhoid Genomics Consortium Group Authorship Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. Elife. 2023 Sep 12;12 - PMC - PubMed
    1. Khan M, Shamim S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms. 2022 Oct 11;10(10) - PMC - PubMed
    1. Moudgil KD, Narang BS. Pathogenesis of typhoid fever. Indian J Pediatr. 1985 Jul-Aug;52(417):371-8. - PubMed

Publication types

LinkOut - more resources