Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 18;31(38):385602.
doi: 10.1088/1361-6528/ab991c. Epub 2020 Jun 3.

Effect of aluminium concentration on phase formation and radiation stability of Cr2Al x C thin film

Affiliations

Effect of aluminium concentration on phase formation and radiation stability of Cr2Al x C thin film

M Imtyazuddin et al. Nanotechnology. .

Abstract

Near-stoichiometric and under-stoichiometric Cr2Al x C (x = 0.9 and 0.75) amorphous compositions were deposited onto a silicon substrate at 330 K in a layer-by-layer fashion using magnetron sputtering from elemental targets. The film thickness was found to be 0.9 µm and 1.2 µm for the near- and under-stoichiometric compositions respectively. A transmission electron microscope (TEM) heating holder was used to heat thin sample lamellae prepared using focused ion beam milling. Near-stoichiometric Cr2AlC thin films consisted of nano MAX phase after crystallization at 873 K. Under-stoichiometric Cr2Al x C (x = 0.75) thin films contained MAX phase along with nanocrystalline chromium aluminides after crystallization at 973 K. Irradiations with 320 keV xenon ions was performed at 623 K using a TEM with an in-situ ion irradiation (MIAMI) facility. Nanocrystalline films of near-stoichiometric Cr2AlC irradiated up to 83 displacements per atom (dpa) showed no observable changes. Also, irradiation of under-stoichiometric nanocrystalline thin films up to 138 dpa did not show any observable amorphization, and recrystallization was observed. This radiation resistance of near- and under-stoichiometric thin films is attributed to the known self-healing property of Cr2Al x C compositions further enhanced by nanocrystallinity.

PubMed Disclaimer

LinkOut - more resources