Chiral Nanoceramics
- PMID: 32500963
- DOI: 10.1002/adma.201906738
Chiral Nanoceramics
Abstract
The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever-expanding toolbox of nanoscale engineering and self-organization provides a chirality-based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.
Keywords: biomimetic helices; chiroplasmonics; metal oxides; mirror asymmetry; nanoassemblies.
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Chiral Inorganic Nanostructures.Chem Rev. 2017 Jun 28;117(12):8041-8093. doi: 10.1021/acs.chemrev.6b00755. Epub 2017 Apr 20. Chem Rev. 2017. PMID: 28426196
-
Graph-theoretical chirality measure and chirality-property relations for chemical structures with multiscale mirror asymmetries.Chirality. 2024 Jun;36(6):e23678. doi: 10.1002/chir.23678. Chirality. 2024. PMID: 38859658
-
Chiral Spectroscopy of Nanostructures.Acc Chem Res. 2023 Jun 20;56(12):1359-1372. doi: 10.1021/acs.accounts.2c00756. Epub 2023 May 31. Acc Chem Res. 2023. PMID: 37256726
-
Biomimetic Chiral Nanomaterials with Selective Catalysis Activity.Adv Sci (Weinh). 2024 Jun;11(23):e2306979. doi: 10.1002/advs.202306979. Epub 2024 Apr 1. Adv Sci (Weinh). 2024. PMID: 38561968 Free PMC article. Review.
-
Chiral Mesostructured Inorganic Materials with Optical Chiral Response.Adv Mater. 2023 Dec;35(51):e2205088. doi: 10.1002/adma.202205088. Epub 2023 Feb 28. Adv Mater. 2023. PMID: 36245314 Review.
Cited by
-
Chiroptical Signal Amplification in Amorphous Siloxane Network by Asymmetric Ring Distortion.J Am Chem Soc. 2025 Aug 6;147(31):27552-27560. doi: 10.1021/jacs.5c05168. Epub 2025 Jul 22. J Am Chem Soc. 2025. PMID: 40694659 Free PMC article.
-
Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams.Nat Commun. 2023 Mar 14;14(1):1422. doi: 10.1038/s41467-023-37048-0. Nat Commun. 2023. PMID: 36918571 Free PMC article.
-
Chiral Induced Spin Selectivity.Chem Rev. 2024 Feb 28;124(4):1950-1991. doi: 10.1021/acs.chemrev.3c00661. Epub 2024 Feb 16. Chem Rev. 2024. PMID: 38364021 Free PMC article. Review.
-
Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence.Light Sci Appl. 2022 Jul 14;11(1):223. doi: 10.1038/s41377-022-00913-6. Light Sci Appl. 2022. PMID: 35835737 Free PMC article. Review.
-
Enantioselective adsorption on chiral ceramics with medium entropy.Nat Commun. 2024 Nov 21;15(1):10105. doi: 10.1038/s41467-024-54414-8. Nat Commun. 2024. PMID: 39572550 Free PMC article.
References
-
- a) R. S. Cahn, C. Ingold, V. Prelog, Angew. Chem., Int. Ed. Engl. 1966, 5, 385;
-
- b) Y. Wang, J. Xu, Y. Wang, H. Chen, Chem. Soc. Rev. 2013, 42, 2930.
-
- a) H. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 2009, 65, 371;
-
- b) L. Pasteur, Ann. Chim. Phys. 1848, 24, 442.
-
- a) V. V. Borovkov, G. A. Hembury, Y. Inoue, Acc. Chem. Res. 2004, 37, 449;
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous