Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 20:736:139672.
doi: 10.1016/j.scitotenv.2020.139672. Epub 2020 May 25.

Exploring microcystin-degrading bacteria thriving on recycled membranes during a cyanobacterial bloom

Affiliations

Exploring microcystin-degrading bacteria thriving on recycled membranes during a cyanobacterial bloom

Jesús Morón-López et al. Sci Total Environ. .

Abstract

Microcystins (MC) are highly toxic secondary metabolites produced by cyanobacterial blooms in many freshwater ecosystems used for recreational and drinking water purposes. So far, biological processes remain to be optimized for an efficient cyanotoxin removal, and new approaches are necessary to compete with physical-chemical treatments. In previous studies we provided a new concept of membrane biofilm reactor made of recycled material, in which a single MC-degrading bacterial strain was inoculated. The present study evaluates the capacity of bacterial consortia associated with freshwater cyanobacterial blooms to form biofilms on recycled membranes and remove MC. Three different discarded reverse osmosis (RO) membranes, previously used in desalination plants after treating brackish water (BWd), seawater (SWd) and brackish water but transformed into nanofiltration (BWt-NF), were exposed to a cyanobacterial bloom in San Juan reservoir (central Spain). Results showed that the three recycled membranes developed a bacterial community with MC removal capacity. Little differences in bacterial coverage and MC removal efficiency between membranes were observed after their exposure in the reservoir. High-throughput sequencing of 16S rRNA gene analysis showed similar bacterial community composition at the phylum level but dissimilar at the order level between the three membranes. This suggests possible surface selectivity on the attached bacterial community. The mlr- candidates such as Burkholderiales and Methylophilales were highly abundant in BWt-NF and BWd, respectively, while mlr+ candidates (e.g. Sphingomonadales) were low abundant in all membranes. Analysis of mlrA and mlrB genes used as markers for MC degradation following mlr-pathway confirmed the presence of this pathway in all membranes. These results suggest the co-existence of both genotypes in membrane-attached native biofilms. Therefore, this study confirms that recycled membranes are suitable support for many MC-degrading bacteria, thus giving value to discarded membranes for eco-friendly and low-cost biological filters.

Keywords: Bacterial community composition; Biofilm; Discarded membranes; High-throughput sequencing; Microcystin; mlr genes.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

LinkOut - more resources