Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun 5;13(1):67.
doi: 10.1186/s13045-020-00893-3.

Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment

Affiliations
Review

Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment

Wenyu Wang et al. J Hematol Oncol. .

Abstract

Exosomes are small extracellular vesicles secreted by almost all the cells. Molecular cargos of exosomes can partially reflect the characteristics of originating cells. Exosome-mediated cell-to-cell interactions in the microenvironment are critical in cancer progression. Hypoxia, a key pro-cancerous feature of the tumor microenvironment, alters the releasing and contents of exosomes. A growing body of evidence shows that hypoxia induces more aggressive phenotypes in cancer. Of note, non-coding RNAs shuttled in hypoxic tumor-derived exosomes have been demonstrated as fundamental molecules in regulating cancer biology and remodeling tumor microenvironment. Furthermore, these hypoxic tumor-derived exosomal non-coding RNAs can be detected in the body fluids, serving as promising diagnostic and prognostic biomarkers. The current review discusses changes in cancer behaviors regulated by exosomes-secreted non-coding RNAs under hypoxic conditions.

Keywords: Exosomes; Hypoxia; LncRNA; MiRNA; Non-coding RNA; Tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Hypoxia influences the secretion and non-coding RNA cargos of exosomes. Legend: Extracellular components enter cells through endocytosis along with the plasma membrane, leading to the formation of early endosomes and late endosomes (MVBs). Some molecules like ESCRT machinery, ALIX, tetraspanins, and ceramides are involved in this process. Several Rab GTPases are associated with MVBs transporting to the plasma membrane. Then, exosomes with specific cargos are released through exocytosis. Hypoxia triggers the alteration in gene expression of HIFs or other signaling pathways, which may impact exosome biogenesis and cargo sorting by regulating these molecules. Besides, non-coding RNAs binding with some RNA binding proteins like hnRNPA2B1, YB1, NSNU2, or Ago2 might be favorably sorted into exosomes
Fig. 2
Fig. 2
Exosomal non-coding RNAs regulate the hypoxic tumor microenvironment. Legend: Hypoxic donor cells impact recipient cells by transmitting non-coding RNAs via exosomes. These exosomal non-coding RNAs can be uptaken by recipient cells and alter their biological behaviors through various pathways, thus regulating tumor development
Fig. 3
Fig. 3
Hypoxic tumor-derived circulating exosomal non-coding RNAs in liquid biopsy. Legend: Exosomes are present in diverse biofluids including blood, cerebrospinal fluids, saliva, milk, peritoneal fluid, urine, and synovial fluid. Exosomes can be isolated from these biofluids, and non-coding RNAs are then analyzed for diagnostic or prognosis markers. As illustrated on the right side of the figure, various methods have been developed to isolate exosomes with different advantages and disadvantages each (ultracentrifugation: high sample capacity, minor impacts on exosomal components; time consuming, facility dependent. Polymer-based precipitation reagents: simple steps, possible for small sample volume, high yield; expensive reagents, low purity; immunoaffinity capture: high purity and specificity; expensive reagent, low yield, antibody dependent; density gradient separation: high purity; complicated procedures, low yield, facility dependent. Ultrafiltration: less time consuming; low purity and integrity)

References

    1. Dayan F, Mazure NM, Brahimi-Horn MC, Pouyssegur J. A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron. 2008;1(1):53–68. - PMC - PubMed
    1. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10:12. - PMC - PubMed
    1. Cadamuro M, Brivio S, Spirli C, Joplin RE, Strazzabosco M, Fabris L. Autocrine and paracrine mechanisms promoting chemoresistance in cholangiocarcinoma. Int J Mol Sci. 2017;18:1. - PMC - PubMed
    1. Wegiel B, Vuerich M, Daneshmandi S, Seth P. Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy. Front Oncol. 2018;8:284. - PMC - PubMed
    1. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. - PMC - PubMed

Publication types

MeSH terms