Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun;18(6):417-424.
doi: 10.1016/S1875-5364(20)30049-2.

Advances in biosynthesis of triterpenoid saponins in medicinal plants

Affiliations
Review

Advances in biosynthesis of triterpenoid saponins in medicinal plants

Lu Yao et al. Chin J Nat Med. 2020 Jun.

Abstract

In recent years, biosynthesis of triterpenoid saponins in medicinal plants has been widely studied because of their active ingredients with diverse pharmacological activities. Various oxidosqualene cyclases, cytochrome P450 monooxygenases, uridine diphosphate glucuronosyltransferases, and transcription factors related to triterpenoid saponins biosynthesis have been explored and identified. In the biosynthesis of triterpenoid saponins, the progress of gene mining by omics-based sequencing, gene screening, gene function verification, catalyzing mechanism of key enzymes and gene regulation are summarized and discussed. By the progress of the biosynthesis pathway of triterpenoid saponins, the large-scale production of some triterpenoid saponins and aglycones has been achieved through plant tissue culture, transgenic plants and engineered yeast cells. However, the complex biosynthetic pathway and structural diversity limit the biosynthesis of triterpenoid saponins in different system. Special focus can further be placed on the systematic botany information of medicinal plants obtained from omics large dataset, and triterpenoid saponins produced by synthetic biology strategies, gene mutations and gene editing technology.

Keywords: Cytochrome P450 monooxygenases; Medicinal plant; Transcription factor; Triterpenoid saponins; Uridine diphosphate glucuronosyltransferases.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources