Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds
- PMID: 32504689
- DOI: 10.1016/j.actbio.2020.05.038
Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds
Abstract
Porous metallic biomaterials developed from pentamode metamaterials (PMs) were rationally designed to mimic the topological, mechanical, and mass transport properties of human bones. Here, a series of diamond-based PMs with different strut parameters were fabricated from a Ti-6Al-4V powder by selective laser melting (SLM) technique. The morphological features, mechanical properties and permeability of PM samples were then characterized. In terms of morphology, the as-built PMs were well consistent with the as-designed ones, although the slight surface deviations were presented in overhanging areas. The PM scaffolds showed a switchable deformation pattern controlled by the slenderness ratio of struts. The double-cone strut topology increases the tortuosity and thereby accelerates the nutrients supply, waste removal, and cell migration to the whole scaffold region and circumambient bone tissue. The measured mechanical properties (i.e., E: 0.59-2.90 GPa, σy: 20.59-112.63 MPa) and computational permeability values (k: 9.87-49.19 × 10-9 m2) of PM scaffolds were all in accordance with those of trabecular bone. The experimental permeability values were linearly dependent on the results of simulations. This study showed the great potential of PMs as bone scaffolds. Moreover, we demonstrated that PM-based porous biomaterials can decouple the mass transport and mechanical properties of bone scaffolds, so as to achieve an unprecedented level of tailoring their multi-physics properties. STATEMENT OF SIGNIFICANCE: The topological diversity can significantly improve the adaptability of the implant to the primary bone tissue. Previous studies revealed that the mechanical and mass transport properties of porous biomaterials are correlated to the material types, porosities and lattice topologies but neglected effects of strut design. We show here the influence of strut morphology on the mechanical and mass transport properties which are independently tailored, that is, the mass transport properties can be markedly increased while maintaining the mechanical properties of mimicking specific bones, vice versa. This study emphasizes the importance of strut topological design in the development of AM porous biomaterials.
Keywords: Mechanical properties; Pentamode metamaterials; Permeability; Porous metallic biomaterials; Selective laser melting.
Copyright © 2020. Published by Elsevier Ltd.
Conflict of interest statement
Declaration of Competing Interest We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Tailored Mechanical Response and Mass Transport Characteristic of Selective Laser Melted Porous Metallic Biomaterials for Bone Scaffolds”.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
