Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:105:101860.
doi: 10.1016/j.artmed.2020.101860. Epub 2020 May 3.

Reconstructing the patient's natural history from electronic health records

Affiliations

Reconstructing the patient's natural history from electronic health records

Marjan Najafabadipour et al. Artif Intell Med. 2020 May.

Abstract

The automatic extraction of a patient's natural history from Electronic Health Records (EHRs) is a critical step towards building intelligent systems that can reason about clinical variables and support decision making. Although EHRs contain a large amount of valuable information about the patient's medical care, this information can only be fully understood when analyzed in a temporal context. Any intelligent system should then be able to extract medical concepts, date expressions, temporal relations and the temporal ordering of medical events from the free texts of EHRs; yet, this task is hard to tackle, due to the domain specific nature of EHRs, writing quality and lack of structure of these texts, and more generally the presence of redundant information. In this paper, we introduce a new Natural Language Processing (NLP) framework, capable of extracting the aforementioned elements from EHRs written in Spanish using rule-based methods. We focus on building medical timelines, which include disease diagnosis and its progression over time. By using a large dataset of EHRs comprising information about patients suffering from lung cancer, we show that our framework has an adequate level of performance by correctly building the timeline for 843 patients from a pool of 989 patients, achieving a precision of 0.852.

Keywords: Electronic Health Records; Natural Language Processing; Temporal Reasoning.

PubMed Disclaimer

Publication types

LinkOut - more resources