Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;46(9):1256-1264.
doi: 10.1016/j.joen.2020.05.016. Epub 2020 Jun 4.

Regeneration of Tooth with Allogenous, Autoclaved Treated Dentin Matrix with Dental Pulpal Stem Cells: An In Vivo Study

Affiliations
Free article

Regeneration of Tooth with Allogenous, Autoclaved Treated Dentin Matrix with Dental Pulpal Stem Cells: An In Vivo Study

Chia-Chieh Chang et al. J Endod. 2020 Sep.
Free article

Abstract

Introduction: Biomaterials designed for tissue engineering should be nontoxic and nonimmunogenic and should achieve their intended functions. Treated dentin matrix (TDM), a bioactive extracellular matrix, is promising for tooth regeneration. However, the effect of sterilization on the surface properties of allogenous TDM in the animal model is unclear.

Methods: The biological characteristics and influences of dental pulp stem cells (DPSCs) with autoclaved TDM (a-TDM) were studied using scanning electron microscopy, immunofluorescence microscopy, immunohistochemistry, and reverse transcription polymerase chain reaction in vitro. In addition, a-TDM was implanted in a mouse model for 6 weeks and was a substrate with DPSCs for tooth reconstruction in a goat animal model in vivo.

Results: Allogenous a-TDM induced and supported DPSCs to develop new dentin pulp-like tissues, enamel dental pulp, and cementum periodontal complexes. Immunohistochemistry data showed that the markers dentin sialoprotein, βⅢ-tubulin, dentin matrix protein 1, amelogenin, VIII factors, type I collagen, cementum-derived attachment protein, and scleraxis transcription factor were positive stained in toothlike tissue.

Conclusions: Allogenous a-TDM served as an effective scaffold enabling DPSCs to proliferate and differentiate into a broad array of resident cells including odontoblasts, fibroblasts, vascular cells, and neural endings. Allogenous a-TDM with DPSCs can provide an ideal biomaterial for optimizing the regeneration of tooth material.

Keywords: Autoclaved; dental pulp stem cells; in vivo study; tissue engineering; treated dentin matrix.

PubMed Disclaimer