Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct:257:127245.
doi: 10.1016/j.chemosphere.2020.127245. Epub 2020 Jun 1.

Amino-functionalized graphene oxide-supported networked Pd-Ag nanowires as highly efficient catalyst for reducing Cr(VI) in industrial effluent by formic acid

Affiliations

Amino-functionalized graphene oxide-supported networked Pd-Ag nanowires as highly efficient catalyst for reducing Cr(VI) in industrial effluent by formic acid

Shuangyou Bao et al. Chemosphere. 2020 Oct.

Abstract

Cr(VI) pollution in wastewater has increasingly become a global environmental problem owing to its acute toxicity. Herein, we present the one-pot procedure for preparing the amino-functionalized (-NH2) graphene oxide (GO-) supported networked Pd-Ag nanowires by co-reduction growth in polyol solution, which show the highly efficient catalytic performance with the excellent cycling stability for the catalytic Cr(VI) reduction by formic acid as an in-situ source of hydrogen at room temperature. The electron transfer from Ag and amino to Pd increases the electron density of Pd, which enhances the catalytic formic acid decomposition and subsequent the catalytic Cr(VI) reduction. The catalytic reduction rate constant of Pd3Ag1/GO-NH2 is determined to be 0.0768 min-1, which is much superior to the monometallic Pd/GO-NH2 and Pd3Ag1/GO. This study provides a novel strategy to develop catalysts for the catalytic reduction of Cr(VI) to Cr(III) in the industrial effluent using formic acid as an in-situ source of hydrogen.

Keywords: Cr(VI) reduction; Formic acid; GO-NH(2); Nanowires; Pd-Ag.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources