Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 8:9:e56211.
doi: 10.7554/eLife.56211.

Dreaming with hippocampal damage

Affiliations

Dreaming with hippocampal damage

Goffredina Spanò et al. Elife. .

Abstract

The hippocampus is linked with both sleep and memory, but there is debate about whether a salient aspect of sleep - dreaming - requires its input. To address this question, we investigated if human patients with focal bilateral hippocampal damage and amnesia engaged in dreaming. We employed a provoked awakening protocol where participants were woken up at various points throughout the night, including during non-rapid eye movement and rapid eye movement sleep, to report their thoughts in that moment. Despite being roused a similar number of times, dream frequency was reduced in the patients compared to control participants, and the few dreams they reported were less episodic-like in nature and lacked content. These results suggest that hippocampal integrity may be necessary for typical dreaming to occur, and aligns dreaming with other hippocampal-dependent processes such as episodic memory that are central to supporting our mental life.

Keywords: amnesia; dreaming; episodic memory; hippocampus; human; neuroscience; sleep.

Plain language summary

Dreaming has intrigued humans for thousands of years, but why we dream still remains somewhat of a mystery. Although dreams are not a precise replay of our memories, one idea is that dreaming helps people process past experiences as they sleep. If this is true, then part of the brain called the hippocampus that is important for memory should also be necessary for dreaming. Damage to the hippocampus can cause a condition called amnesia that prevents people from forming new memories and remembering past experiences. However, studies examining dreaming in people with amnesia have produced mixed results: some found that damage to the hippocampus had no effect on dreams, while others found it caused people to have repetitive dreams that lacked detail. One reason for these inconsistencies is that some studies asked participants about their dreams the next morning by which time most people, particularly those with amnesia, have forgotten if they dreamed. To overcome this limitation, Spanò et al. asked participants about their dreams immediately after being woken up at various points during the night. The experiment was carried out with four people who had damage to both the left and right hippocampus and ten healthy volunteers. Spanò et al. found that the people with hippocampal damage reported fewer dreams and the dreams they had were much less detailed. These findings suggest that a healthy hippocampus is necessary for both memory and dreaming, reinforcing the link between the two. Hippocampal damage is associated with a number of diseases, including dementia. If these diseases cause patients to dream less, this may worsen the memory difficulties associated with these conditions.

PubMed Disclaimer

Conflict of interest statement

GS, GP, CM, IC, SD, TM, JE, CR, EM No competing interests declared

Figures

Figure 1.
Figure 1.. Experimental set-up and key findings.
(A) Two researchers were located in Room one which was adjacent to Room two where the participant slept. The participant was woken up at various times during their night’s sleep to report their thoughts in that moment. PSG recordings informed the decisions about when to awaken the participant to ensure sampling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We used a Bluetooth intercom system equipped with a camera for continuous visual monitoring and communication with the participant. (B) The number of total awakenings was not different between the patients (HPC) and control (CTL) participants. (C) There were also no significant group differences in the proportion of awakenings from NREM and REM sleep. (D) In contrast, the patients reported significantly fewer dreams than the control participants, expressed here as the total number of dreams divided by the total number of awakenings (+ / - 1 SEM; p=0.028). (E) The few dreams the patients had were significantly less rich in content compared to those of the control participants (n = 3 patients, as one patient had no dreams at all and was not included in this analysis; + / - 1 SEM; p=0.018). For other measures see Table 2.
Figure 2.
Figure 2.. Example dream reports.
Experimenter probing is shown in italics. HPC1−4 = the four hippocampal-damaged patients; CTL = an example control participant.

Comment in

References

    1. Addis DR, Wong AT, Schacter DL. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia. 2007;45:1363–1377. doi: 10.1016/j.neuropsychologia.2006.10.016. - DOI - PMC - PubMed
    1. Andrillon T, Nir Y, Cirelli C, Tononi G, Fried I. Single-neuron activity and eye movements during human REM sleep and awake vision. Nature Communications. 2015;6:7884. doi: 10.1038/ncomms8884. - DOI - PMC - PubMed
    1. Antrobus J, Kondo T, Reinsel R, Fein G. Dreaming in the late morning: summation of REM and diurnal cortical activation. Consciousness and Cognition. 1995;4:275–299. doi: 10.1006/ccog.1995.1039. - DOI - PubMed
    1. Bastiaansen AEM, van Sonderen A, Titulaer MJ. Autoimmune encephalitis with anti-leucine-rich glioma-inactivated 1 or anti-contactin-associated protein-like 2 antibodies (formerly called voltage-gated potassium channel-complex antibodies) Current Opinion in Neurology. 2017;30:302–309. doi: 10.1097/WCO.0000000000000444. - DOI - PubMed
    1. Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, Vaughn BV. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.2. Darien, Illinois: Academy, American of Sleep Medicine; 2015.