Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 25:25:31.
doi: 10.1186/s11658-020-00225-w. eCollection 2020.

Role of angiotensin-converting enzyme in myeloid cell immune responses

Affiliations
Review

Role of angiotensin-converting enzyme in myeloid cell immune responses

Duo-Yao Cao et al. Cell Mol Biol Lett. .

Abstract

Angiotensin-converting enzyme (ACE), a dicarboxypeptidase, plays a major role in the regulation of blood pressure by cleaving angiotensin I into angiotensin II (Ang II), a potent vasoconstrictor. Because of its wide substrate specificity and tissue distribution, ACE affects many diverse biological processes. In inflammatory diseases, including granuloma, atherosclerosis, chronic kidney disease and bacterial infection, ACE expression gets upregulated in immune cells, especially in myeloid cells. With increasing evidences connecting ACE functions to the pathogenesis of these acquired diseases, it is suggested that ACE plays a vital role in immune functions. Recent studies with mouse models of bacterial infection and tumor suggest that ACE plays an important role in the immune responses of myeloid cells. Inhibition of ACE suppresses neutrophil immune response to bacterial infection. In contrast, ACE overexpression in myeloid cells strongly induced bacterial and tumor resistance in mice. A detailed biochemical understanding of how ACE activates myeloid cells and which ACE peptide(s) (substrate or product) mediate these effects could lead to the development of novel therapies for boosting immunity against a variety of stimuli, including bacterial infection and tumor.

Keywords: Angiotensin-converting enzyme; Dendritic cells; Hematopoiesis; Immune response; MHC class I antigen presentation; Macrophages; Melanoma; Methicillin-resistant Staphylococcus aureus (MRSA); Myeloid cells; Neutrophils.

PubMed Disclaimer

Conflict of interest statement

Competing interestsNo conflicts of interest, financial or otherwise, are declared by the authors.

Figures

Fig. 1
Fig. 1
ACE upregulation enhances myeloid cell immune responses. In physiological conditions, ACE expression increased during the differentiation and functional maturation of myeloid-derived cells. Upon immune challenge, the expression of ACE further increased in activated myeloid cells facilitated the optimal immune responses of these cells. Upregulation of ACE in myeloid cells (eg. NeuACE neutrophils and ACE10/10 macrophages) strongly enhanced immune responses of these cells, beyond the normal capacity of WT cells. In neutrophils, ACE upregulation induced oxidative bactericidal response, which is due the upregulation of NADPH oxidase activity. In macrophages, ACE upregulation enhanced M1 activation of macrophages due to the increased activation of NF-kB, STAT1 and TNFα, which in turn gives a strong anti-bacterial and anti-tumor phenotype. In APCs (DCs and macrophages), ACE trims the peptide repertoire before they are bound to MHC class I complex and displayed by cells, which activates T cell – adaptive immune response and humoral immune response
Fig. 2
Fig. 2
ACE affects anti-bacterial defense. In mice, ACE knockout suppressed bacterial resistance. Representative images showing MRSA skin lesion at day 4 post-bacterial subcutaneous injection (1 × 107 CFU/mouse flank) [Cao D-Y et al. Unpublished data]
Fig. 3
Fig. 3
Melanoma tumor growth. In mice, overexpression of ACE C-domain enhanced macrophage anti-tumor activity. Representative images showing tumor growth at day 14 after intradermal injection of B16-F10 melanoma cells (106 cells/mouse) [Cao D-Y et al. Unpublished data]

References

    1. Peart WS. Renin-angiotensin system. N Engl J Med. 1975;292(6):302–306. - PubMed
    1. Nishimura H. Renin-angiotensin system in vertebrates: phylogenetic view of structure and function. Anat Sci Int. 2017;92(2):215–247. - PubMed
    1. Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2):H137–H152. - PMC - PubMed
    1. Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther. 2008;120(3):292–316. - PMC - PubMed
    1. Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013;65(1):1–46. - PMC - PubMed

Substances