Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2020 Apr 21:2020.04.21.051912.
doi: 10.1101/2020.04.21.051912.

Human iPSC-Derived Cardiomyocytes are Susceptible to SARS-CoV-2 Infection

Human iPSC-Derived Cardiomyocytes are Susceptible to SARS-CoV-2 Infection

Arun Sharma et al. bioRxiv. .

Update in

Abstract

Coronavirus disease 2019 (COVID-19) is a viral pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is predominantly defined by respiratory symptoms, but cardiac complications including arrhythmias, heart failure, and viral myocarditis are also prevalent. Although the systemic ischemic and inflammatory responses caused by COVID-19 can detrimentally affect cardiac function, the direct impact of SARS-CoV-2 infection on human cardiomyocytes is not well-understood. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model system to examine the mechanisms of cardiomyocyte-specific infection by SARS-CoV-2. Microscopy and immunofluorescence demonstrated that SARS-CoV-2 can enter and replicate within hiPSC-CMs, localizing at perinuclear locations within the cytoplasm. Viral cytopathic effect induced hiPSC-CM apoptosis and cessation of beating after 72 hours of infection. These studies show that SARS-CoV-2 can infect hiPSC-CMs in vitro , establishing a model for elucidating the mechanisms of infection and potentially a cardiac-specific antiviral drug screening platform.

PubMed Disclaimer

Publication types

LinkOut - more resources