Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2020 Apr 17:2020.04.12.20062661.
doi: 10.1101/2020.04.12.20062661.

Artificial intelligence-enabled rapid diagnosis of COVID-19 patients

Artificial intelligence-enabled rapid diagnosis of COVID-19 patients

Xueyan Mei et al. medRxiv. .

Update in

  • Artificial intelligence-enabled rapid diagnosis of patients with COVID-19.
    Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, Xie Z, Ma Y, Robson PM, Chung M, Bernheim A, Mani V, Calcagno C, Li K, Li S, Shan H, Lv J, Zhao T, Xia J, Long Q, Steinberger S, Jacobi A, Deyer T, Luksza M, Liu F, Little BP, Fayad ZA, Yang Y. Mei X, et al. Nat Med. 2020 Aug;26(8):1224-1228. doi: 10.1038/s41591-020-0931-3. Epub 2020 May 19. Nat Med. 2020. PMID: 32427924 Free PMC article.

Abstract

For diagnosis of COVID-19, a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT-PCR) test is routinely used. However, this test can take up to two days to complete, serial testing may be required to rule out the possibility of false negative results, and there is currently a shortage of RT-PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of COVID-19 patients. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiologic findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history, and laboratory testing to rapidly diagnose COVID-19 positive patients. Among a total of 905 patients tested by real-time RT-PCR assay and next-generation sequencing RT-PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an AUC of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of RT-PCR positive COVID-19 patients who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients.

PubMed Disclaimer

Publication types

LinkOut - more resources