Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May 27:8:18.
doi: 10.1186/s40364-020-00197-1. eCollection 2020.

Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies

Affiliations
Review

Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies

Yuru Nie et al. Biomark Res. .

Abstract

Chimeric antigen receptor (CAR) T cell therapy, especially anti-CD19 CAR T cell therapy, has shown remarkable anticancer activity in patients with relapsed/refractory acute lymphoblastic leukemia, demonstrating an inspiring complete remission rate. However, with extension of the follow-up period, the limitations of this therapy have gradually emerged. Patients are at a high risk of early relapse after achieving complete remission. Although there are many studies with a primary focus on the mechanisms underlying CD19- relapse related to immune escape, early CD19+ relapse owing to poor in vivo persistence and impaired efficacy accounts for a larger proportion of the high relapse rate. However, the mechanisms underlying CD19+ relapse are still poorly understood. Herein, we discuss factors that could become obstacles to improved persistence and efficacy of CAR T cells during production, preinfusion processing, and in vivo interactions in detail. Furthermore, we propose potential strategies to overcome these barriers to achieve a reduced CD19+ relapse rate and produce prolonged survival in patients after CAR T cell therapy.

Keywords: Acute lymphocytic leukemia (ALL); CAR T cell therapy; Chimeric antigen receptor; Mechanism; Positive relapse; Strategy.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Factors influencing CD19 CAR T cell therapy. The limited persistence and impaired efficacy of CAR T cells could be possible mechanisms underlying CD19+ relapse. This figure summarizes potential obstacles to durable remission and better CAR T cell efficacy. First, T cell collection: T cells selected for manufacturing should be of sufficient quantity and good quality and have a phenotype with memory characteristics. Second, CAR T cell manufacture: transgene rejection induced by a murine scFv results in transient in vivo persistence. Selection of the costimulatory domain, transduction technique, especially vector selection, and proliferation method also plays roles in persistence and efficacy. Third, preinfusion: the tumor burden before infusion is associated with patient long-term survival. In addition to lymphodepleting therapy, a conditioning regimen with fludarabine ameliorates T cell persistence. Finally, postinfusion: normal B cells are supposed to recover, but transient B cell aplasia may result in CD19+ relapse. Aberrant signaling pathways and the BM microenvironment will impair a T cell’s potential along with its in vivo persistence
Fig. 2
Fig. 2
Main signaling pathways involved in CD19-BBζ T cells and CD19-28ζ T cells. a A high mitochondrial respiratory capacity promotes metabolism and differentiation. 4-1BB domain signaling activates the PI3K pathway and upregulates Bcl-xL and BFL-1 expression. Tonic CAR-derived 4-1BB signaling activates the NF-B pathway and enhances FAS-dependent apoptosis. CD19-BBζ T cells diminish the expression of exhaustion-associated molecules more than CD19-28ζ T cells. b The main signaling pathways involved in CD19-28ζ T cells. CAR T cell inhibition induced by regulatory T cells, IL-10 and TGF-β can be reduced by the incorporation of the CD28 domain. CD19-28ζ T cells exhibit enhanced activation of the transcription factor NF-B and promote cytokine secretion. CD19-28ζ T cells are more likely to result in the development of severe CRS than CD19-BBζ T cells. However, tonic CAR CD3ζ phosphorylation triggered by clustering of the CAR single-chain variable fragment (scFv) leads to more rapid exhaustion
Fig. 3
Fig. 3
The mechanism of CD19+ relapse in BM microenvironment. a Main interaction between negative regulatory cells, tumor cells and immune effector cells in BM microenvironment. Tregs, MDSCs and TAMs suppress CTLs, DCs, NK cells and T cells by cytokines, enzymes and cell-cell interactions. Negative regulatory cells and tumor cells attract and improve each other’s recruitment, differentiation and expansion. Tregs: regulatory T cells; MDSCs: myeloid-derived suppressor cells; TAMs: tumor associated macrophages; IDO: indoleamine-2, 3-dioxygenase; CTLs: cytotoxic T cells; DCs: dendritic cells; NK cells: natural kill cells; TGF-β: transforming growth factor β. b The negative regulation checkpoint in BM microenvironment. The PD-1/PD-L1 pathway between tumor cells and MDSCs, T cells, TAMs inhibits the proliferating of T cells and transforms T cells into induces Tregs or induces apoptosis. The CTLA-4/B7 pathway suppresses APCs while activates Tregs. (Tregs: regulatory T cells; iTregs: induced Tregs; TAMs: tumor associated macrophages; APCs: antigen-presenting cells; MDSCs: myeloid-derived suppressor cells; PD-1: programmed death-1; PD-L: programmed cell death 1 ligand)
Fig. 4.
Fig. 4.
Some key points during the process of manufacturing CAR T cells. a The progress of T cells with the associated characteristics. As TN cells differentiate, the proliferative capacity of T cells is gradually reduced. Except for TE cells, the remaining subsets have a self-renewal ability, which declines from TN to TEM cells. Therefore, it is best to choose TSCM cells for CAR T cell generation. b Adding IL-7/IL-15 during in vitro expansion has a positive impact. IL-7/IL-15 can increase the proportion of TSCM cells and contribute to maintaining the ratio of CD4+:CD8+ cells.

References

    1. Liu D. CAR-T “the living drugs”, immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J Hematol Oncol. 2019;12(1):113. - PMC - PubMed
    1. Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–1197. - PMC - PubMed
    1. June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365. - PubMed
    1. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–1518. - PMC - PubMed
    1. Rosenbaum L. Tragedy, Perseverance, and Chance - The Story of CAR-T Therapy. N Engl J Med. 2017;377(14):1313–1315. - PubMed

LinkOut - more resources