Surface defective g-C3N4-xClx with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants
- PMID: 32516728
- DOI: 10.1016/j.jhazmat.2020.122897
Surface defective g-C3N4-xClx with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants
Abstract
Natural sponge is an ancient marine organism with a single lamellar structure, on which there are abundant porous channels to compose full-fledged spatial veins. Illumined by the natural spongy system, herein, the Cl doped surface defective graphite carbon nitride (g-C3N4-xClx) was constructed through microwave etching. In this process, microwave with HCl was employed to produce surface defects and peel bulk g-C3N4 to form natural spongy structured g-C3N4-xClx with three-dimensional networks. The spongy structure of the photocatalyst could provide abundant and unobstructed pathways for the transfer and separation of electron-hole pairs, and it was beneficial for photocatalytic reaction. The spongy defective g-C3N4-xClx achieved excellent degradation of diclofenac sodium (100%), bisphenol A (88.2%), phenol (85.7%) and methylene blue (97%) solution under simulated solar irradiation, respectively. The chlorine atoms were introduced into the g-C3N4 skeleton in microwave field with HCl, forming C-Cl bonds and surface polarization field, which could significantly accelerate the separation of photogenerated electrons and holes. As an efficient and universal approach, microwave etching can be generally used to create surface defects for most photocatalysts, which may have potential applications in environmental purification, energy conversion and photodynamic therapy.
Keywords: Microwave etching; Photocatalysis; Spongy structure; Surface polarization field; g-C(3)N(4).
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources
Research Materials
