Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun 9:106:109832.
doi: 10.1016/j.jbiomech.2020.109832. Epub 2020 May 11.

Determining anatomical frames via inertial motion capture: A survey of methods

Affiliations
Review

Determining anatomical frames via inertial motion capture: A survey of methods

Rachel V Vitali et al. J Biomech. .

Abstract

Despite the exponential growth in using inertial measurement units (IMUs) for biomechanical studies, future growth in "inertial motion capture" is stymied by a fundamental challenge - how to estimate the orientation of underlying bony anatomy using skin-mounted IMUs. This challenge is of paramount importance given the need to deduce the orientation of the bony anatomy to estimate joint angles. This paper systematically surveys a large number (N = 112) of studies from 2000 to 2018 that employ four broad categories of methods to address this challenge across a range of body segments and joints. We categorize these methods as: (1) Assumed Alignment methods, (2) Functional Alignment methods, (3) Model Based methods, and (4) Augmented Data methods. Assumed Alignment methods, which are simple and commonly used, require the researcher to visually align the IMU sense axes with the underlying anatomical axes. Functional Alignment methods, also commonly used, relax the need for visual alignment but require the subject to complete prescribed movements. Model Based methods further relax the need for prescribed movements but instead assume a model for the joint. Finally, Augmented Data methods shed all of the above assumptions, but require data from additional sensors. Significantly different estimates of the underlying anatomical axes arise both across and within these categories, and to a degree that renders it difficult, if not impossible, to compare results across studies. Consequently, a significant future need remains for creating and adopting a standard for defining anatomical axes via inertial motion capture to fully realize this technology's potential for biomechanical studies.

Keywords: Anatomical frame; Inertial measurement units; Inertial motion capture; Sensor-to-segment.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources