Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul;31(5):305-311.
doi: 10.1016/j.tcm.2020.06.001. Epub 2020 Jun 7.

Lipoprotein(a): Expanding our knowledge of aortic valve narrowing

Affiliations
Review

Lipoprotein(a): Expanding our knowledge of aortic valve narrowing

Amer Youssef et al. Trends Cardiovasc Med. 2021 Jul.

Abstract

Elevated levels of lipoprotein(a) [Lp(a)] have been identified as an independent and causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and, more recently, calcific aortic valve disease (CAVD). CAVD is a slow, progressive disorder presenting as severe trileaflet calcification known as aortic valve stenosis (AS) that impairs valve motion and restricts ventricular outflow. AS afflicts 2% of the aging population (≥ 65 years) and tends to be quite advanced by the time it presents clinical symptoms of exertional angina, syncope, or heart failure. Currently, the only effective clinical therapy for AS patients is surgical or transcatheter aortic valve replacement. Evidence is accumulating that Lp(a) can exacerbate pathophysiological processes in CAVD, specifically, endothelial dysfunction, formation of foam cells, and promotion of a pro-inflammatory state. In the valve milieu, the pro-inflammatory effects of Lp(a) are manifested in valve thickening and mineralization through pro-osteogenic signaling and changes in gene expression in valve interstitial cells that is primarily facilitated by the oxidized phospholipid content of Lp(a). In AS pathogenesis, an incomplete understanding of the role of Lp(a) at the molecular level and the absence of appropriate animal models are barriers for the development of specific and effective clinical interventions designed to mitigate the role of Lp(a) in AS. However, the advent of effective therapies that dramatically lower Lp(a) provides the possibility of the first medical treatment to halt AS progression.

Keywords: Aortic stenosis; Calcific aortic valve disease; Lipoprotein(a); Oxidized phospholipids.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Supplementary concepts

LinkOut - more resources