Survival of Escherichia coli O157 in autoclaved and natural sandy soil mesocosms
- PMID: 32525952
- PMCID: PMC7289397
- DOI: 10.1371/journal.pone.0234562
Survival of Escherichia coli O157 in autoclaved and natural sandy soil mesocosms
Abstract
While the soil microbiome may influence pathogen survival, determining the major contributors that reduce pathogen survival is inconclusive. This research was performed to determine the survival of E. coli O157 in autoclaved and natural (unautoclaved) sandy soils. Soils were inoculated with three different E. coli O157 strains (stx1+/stx2+, stx1-/stx2-, and stx1-/stx2+), and enumerated until extinction at 30°C. There was a significant difference in the survival of E. coli O157 based on soil treatment (autoclaved versus natural) at 30°C on days 1 (P = 0.00022), 3, (P = 2.53e-14), 7 (P = 5.59e-16), 14 (P = 1.072e-12), 30 (P = 7.18e-9), and 56 (P = 0.00029), with greater survival in autoclaved soils. The time to extinction (two consecutive negative enrichments) for all three strains was 169 and 84 days for autoclaved and natural soils, respectively. A separate E. coli O157 trial supplemented with 16S rRNA gene sequencing of the soil microbiome was performed at 15°C and 30°C on days 0, 7, 14, and 28 for each soil treatment. Greater species richness (Chao1, P = 2.2e-16) and diversity (Shannon, P = 2.2e-16) was observed in natural soils in comparison with autoclaved soils. Weighted UniFrac (beta-diversity) showed a clear distinction between soil treatments (P = 0.001). The greatest reduction of E. coli O157 was observed in natural soils at 30°C, and several bacterial taxa positively correlated (relative abundance) with time (day 0 to 28) in these soils (P < 0.05), suggesting that the presence of those bacteria might cause the reduction of E. coli O157. Taken together, a clear distinction in E. coli O157 survival, was observed between autoclaved and natural soils along with corresponding differences in microbial diversity in soil treatments. This research provides further insights into the bacterial taxa that may influence E. coli O157 in soils.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures





References
-
- Centers for Disease Control and Prevention. 2006. Multistate outbreak of E. coli O157:H7 infections linked to fresh spinach (FINAL UPDATE). 6 October 2006. Available online: https://www.cdc.gov/ecoli/2006/spinach-10-2006.html. Cited 7 January 2020.
-
- US Food and Drug Administration (FDA). 2015. Standards for the growing, harvesting, packing, and holding of produce for human consumption. Available from: https://www.federalregister.gov/documents/2015/11/27/2015-28159/standard.... Cited 24 October 2019.
-
- Centers for Disease Control and Prevention. 2018. Multistate outbreak of E. coli O157:H7 infections linked to Romaine lettuce (Final Update). 28 June 2018. Available online: https://www.cdc.gov/ecoli/2018/o157h7-04-18/index.html. Cited 22 January 2020.
-
- Centers for Disease Control and Prevention. 2019a. Outbreak of E. coli Infections Linked to Romaine Lettuce (Final Update). 9 Jan 2019. Available online: https://www.cdc.gov/ecoli/2018/o157h7-11-18/index.html. Cited 22 January 2020.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources