Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 1;396(10247):313-319.
doi: 10.1016/S0140-6736(20)31304-0. Epub 2020 Jun 11.

Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study

Affiliations

Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study

Silvia Stringhini et al. Lancet. .

Abstract

Background: Assessing the burden of COVID-19 on the basis of medically attended case numbers is suboptimal given its reliance on testing strategy, changing case definitions, and disease presentation. Population-based serosurveys measuring anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) antibodies provide one method for estimating infection rates and monitoring the progression of the epidemic. Here, we estimate weekly seroprevalence of anti-SARS-CoV-2 antibodies in the population of Geneva, Switzerland, during the epidemic.

Methods: The SEROCoV-POP study is a population-based study of former participants of the Bus Santé study and their household members. We planned a series of 12 consecutive weekly serosurveys among randomly selected participants from a previous population-representative survey, and their household members aged 5 years and older. We tested each participant for anti-SARS-CoV-2-IgG antibodies using a commercially available ELISA. We estimated seroprevalence using a Bayesian logistic regression model taking into account test performance and adjusting for the age and sex of Geneva's population. Here we present results from the first 5 weeks of the study.

Findings: Between April 6 and May 9, 2020, we enrolled 2766 participants from 1339 households, with a demographic distribution similar to that of the canton of Geneva. In the first week, we estimated a seroprevalence of 4·8% (95% CI 2·4-8·0, n=341). The estimate increased to 8·5% (5·9-11·4, n=469) in the second week, to 10·9% (7·9-14·4, n=577) in the third week, 6·6% (4·3-9·4, n=604) in the fourth week, and 10·8% (8·2-13·9, n=775) in the fifth week. Individuals aged 5-9 years (relative risk [RR] 0·32 [95% CI 0·11-0·63]) and those older than 65 years (RR 0·50 [0·28-0·78]) had a significantly lower risk of being seropositive than those aged 20-49 years. After accounting for the time to seroconversion, we estimated that for every reported confirmed case, there were 11·6 infections in the community.

Interpretation: These results suggest that most of the population of Geneva remained uninfected during this wave of the pandemic, despite the high prevalence of COVID-19 in the region (5000 reported clinical cases over <2·5 months in the population of half a million people). Assuming that the presence of IgG antibodies is associated with immunity, these results highlight that the epidemic is far from coming to an end by means of fewer susceptible people in the population. Further, a significantly lower seroprevalence was observed for children aged 5-9 years and adults older than 65 years, compared with those aged 10-64 years. These results will inform countries considering the easing of restrictions aimed at curbing transmission.

Funding: Swiss Federal Office of Public Health, Swiss School of Public Health (Corona Immunitas research program), Fondation de Bienfaisance du Groupe Pictet, Fondation Ancrage, Fondation Privée des Hôpitaux Universitaires de Genève, and Center for Emerging Viral Diseases.

PubMed Disclaimer

Figures

Figure
Figure
Seroprevalence estimates and 95% CIs for each week of the survey (A), daily confirmed COVID-19 cases reported in Geneva (B), and cumulative case counts per day and cumulative incidence rate of confirmed COVID-19 (C) Red shading shows the sampling periods for each survey round.

Similar articles

  • Prevalence of SARS-CoV-2 infection in India: Findings from the national serosurvey, May-June 2020.
    Murhekar MV, Bhatnagar T, Selvaraju S, Rade K, Saravanakumar V, Vivian Thangaraj JW, Kumar MS, Shah N, Sabarinathan R, Turuk A, Anand PK, Asthana S, Balachandar R, Bangar SD, Bansal AK, Bhat J, Chakraborty D, Rangaraju C, Chopra V, Das D, Deb AK, Devi KR, Dwivedi GR, Salim Khan SM, Haq I, Kumar MS, Laxmaiah A, Madhuka, Mahapatra A, Mitra A, Nirmala AR, Pagdhune A, Qurieshi MA, Ramarao T, Sahay S, Sharma YK, Shrinivasa MB, Shukla VK, Singh PK, Viramgami A, Wilson VC, Yadav R, Girish Kumar CP, Luke HE, Ranganathan UD, Babu S, Sekar K, Yadav PD, Sapkal GN, Das A, Das P, Dutta S, Hemalatha R, Kumar A, Narain K, Narasimhaiah S, Panda S, Pati S, Patil S, Sarkar K, Singh S, Kant R, Tripathy S, Toteja GS, Babu GR, Kant S, Muliyil JP, Pandey RM, Sarkar S, Singh SK, Zodpey S, Gangakhedkar RR, S Reddy DC, Bhargava B. Murhekar MV, et al. Indian J Med Res. 2020 Jul & Aug;152(1 & 2):48-60. doi: 10.4103/ijmr.IJMR_3290_20. Indian J Med Res. 2020. PMID: 32952144 Free PMC article.
  • Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study.
    Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, Sanmartín JL, Fernández-García A, Cruz I, Fernández de Larrea N, Molina M, Rodríguez-Cabrera F, Martín M, Merino-Amador P, León Paniagua J, Muñoz-Montalvo JF, Blanco F, Yotti R; ENE-COVID Study Group. Pollán M, et al. Lancet. 2020 Aug 22;396(10250):535-544. doi: 10.1016/S0140-6736(20)31483-5. Epub 2020 Jul 6. Lancet. 2020. PMID: 32645347 Free PMC article.
  • SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys.
    Hallal PC, Hartwig FP, Horta BL, Silveira MF, Struchiner CJ, Vidaletti LP, Neumann NA, Pellanda LC, Dellagostin OA, Burattini MN, Victora GD, Menezes AMB, Barros FC, Barros AJD, Victora CG. Hallal PC, et al. Lancet Glob Health. 2020 Nov;8(11):e1390-e1398. doi: 10.1016/S2214-109X(20)30387-9. Epub 2020 Sep 23. Lancet Glob Health. 2020. PMID: 32979314 Free PMC article.
  • Global seroprevalence of SARS-CoV-2 antibodies: A systematic review and meta-analysis.
    Bobrovitz N, Arora RK, Cao C, Boucher E, Liu M, Donnici C, Yanes-Lane M, Whelan M, Perlman-Arrow S, Chen J, Rahim H, Ilincic N, Segal M, Duarte N, Van Wyk J, Yan T, Atmaja A, Rocco S, Joseph A, Penny L, Clifton DA, Williamson T, Yansouni CP, Evans TG, Chevrier J, Papenburg J, Cheng MP. Bobrovitz N, et al. PLoS One. 2021 Jun 23;16(6):e0252617. doi: 10.1371/journal.pone.0252617. eCollection 2021. PLoS One. 2021. PMID: 34161316 Free PMC article.
  • Global SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of standardized population-based studies.
    Bergeri I, Whelan MG, Ware H, Subissi L, Nardone A, Lewis HC, Li Z, Ma X, Valenciano M, Cheng B, Al Ariqi L, Rashidian A, Okeibunor J, Azim T, Wijesinghe P, Le LV, Vaughan A, Pebody R, Vicari A, Yan T, Yanes-Lane M, Cao C, Clifton DA, Cheng MP, Papenburg J, Buckeridge D, Bobrovitz N, Arora RK, Van Kerkhove MD; Unity Studies Collaborator Group. Bergeri I, et al. PLoS Med. 2022 Nov 10;19(11):e1004107. doi: 10.1371/journal.pmed.1004107. eCollection 2022 Nov. PLoS Med. 2022. PMID: 36355774 Free PMC article.

Cited by

References

    1. Roda WC, Varughese MB, Han D, Li MY. Why is it difficult to accurately predict the COVID-19 epidemic? Infect Dis Model. 2020;5:271–281. - PMC - PubMed
    1. Verity R, Okell LC, Dorigatti I. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20:669–677. - PMC - PubMed
    1. Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19 - studies needed. N Engl J Med. 2020;382:1194–1196. - PubMed
    1. WHO Population-based age-stratified seroepidemiological investigation protocol for COVID-19 virus infection. March 17, 2020. https://apps.who.int/iris/handle/10665/331656
    1. République et canton de Genève COVID-19: situation épidémiologique à Genève. June 4, 2020. https://www.ge.ch/document/covid-19-situation-epidemiologique-geneve

Publication types

MeSH terms