Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;43(2):199-206.
doi: 10.1080/09593330.2020.1782995. Epub 2020 Jun 20.

Homogeneous photocatalytic degradation of azo dye Reactive Black 5 using Fe(III) ions under visible light

Affiliations

Homogeneous photocatalytic degradation of azo dye Reactive Black 5 using Fe(III) ions under visible light

Shailaja P Sadhu et al. Environ Technol. 2022 Jan.

Abstract

Efficient and cost-effective method to destroy complex dyes is warranted to combat increasing water pollution. In the present study, homogeneous photocatalytic oxidation (PCO) of Reactive Black 5 (RB5) dye was studied using ferric ions (Fe(III)) under visible light (VL) irradiation and sunlight (SL). In the presence of 5 mM ferric ions and at pH 2.6, more than 80% of initial 20 mg/L RB5 was decolourized in 60 min under artificial VL. Decolourization followed pseudo first-order kinetics with the reaction rate constant 0.0356 min-1. 79% of initial COD was removed at the end of 60 min, suggesting mineralization of RB5 as the main cause of decolourization. Using similar experimental conditions under SL, more than 90% RB5 was decolourized in 15 min with an almost 10-fold increase in the reaction rate constant (0.34 min-1). Rate and extent of RB5 destruction significantly decreased in the presence of •OH scavenger indicating photoreduction of Fe-hydroxo species and generation of •OH as the main mechanism of RB5 degradation. RB5 removal increased from ca. 30% to 84% with the increase in Fe(III) concentration from 0.5 to 5 mM. The corresponding 1st-order rate constants increased linearly from 0.006 to 0.036 min-1. RB5 degradation decreased linearly (R2 = 0.98) from 91.7% to 63.3% with the increase in initial RB5 concentration from 10 to 40 mg/L. Fe(III) induced homogenous PCO appears to be a reliable and low-cost method of advanced oxidation without the need for costly reagent such as H2O2.

Keywords: Fe-hydroxo species; Homogenous photocatalysis; Reactive Black 5; visible light; •OH radicals.

PubMed Disclaimer

LinkOut - more resources