Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 29;22(6):e19786.
doi: 10.2196/19786.

A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study

Affiliations

A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study

Ying Liu et al. J Med Internet Res. .

Abstract

Background: The coronavirus disease (COVID-19) has become an urgent and serious global public health crisis. Community engagement is the first line of defense in the fight against infectious diseases, and general practitioners (GPs) play an important role in it. GPs are facing unique challenges from disasters and pandemics in delivering health care. However, there is still no suitable mobile management system that can help GPs collect data, dynamically assess risks, and effectively triage or follow-up with patients with COVID-19.

Objective: The aim of this study is to design, develop, and deploy a mobile-based decision support system for COVID-19 (DDC19) to assist GPs in collecting data, assessing risk, triaging, managing, and following up with patients during the COVID-19 outbreak.

Methods: Based on the actual scenarios and the process of patients using health care, we analyzed the key issues that need to be solved and designed the main business flowchart of DDC19. We then constructed a COVID-19 dynamic risk stratification model with high recall and clinical interpretability, which was based on a multiclass logistic regression algorithm. Finally, through a 10-fold cross-validation to quantitatively evaluate the risk stratification ability of the model, a total of 2243 clinical data consisting of 36 dimension clinical features from fever clinics were used for training and evaluation of the model.

Results: DDC19 is composed of three parts: mobile terminal apps for the patient-end and GP-end, and the database system. All mobile terminal devices were wirelessly connected to the back end data center to implement request sending and data transmission. We used low risk, moderate risk, and high risk as labels, and adopted a 10-fold cross-validation method to evaluate and test the COVID-19 dynamic risk stratification model in different scenarios (different dimensions of personal clinical data accessible at an earlier stage). The data set dimensions were (2243, 15) when only using the data of patients' demographic information, clinical symptoms, and contact history; (2243, 35) when the results of blood tests were added; and (2243, 36) after obtaining the computed tomography imaging results of the patient. The average value of the three classification results of the macro-area under the curve were all above 0.71 in each scenario.

Conclusions: DCC19 is a mobile decision support system designed and developed to assist GPs in providing dynamic risk assessments for patients with suspected COVID-19 during the outbreak, and the model had a good ability to predict risk levels in any scenario it covered.

Keywords: COVID-19; decision support system; dynamic risk stratification; multiclass logistic regression; telemedicine triage system.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
The covering scenes of patients using health care during the outbreak of COVID-19. COVID-19: coronavirus disease; CT: computed tomography; GP: general practitioner.
Figure 2
Figure 2
The main business flowchart of DDC19. CT: computed tomography; GP: general practitioner; OCR: optical character recognition.
Figure 3
Figure 3
The construction process of the dynamic risk stratification model.
Figure 4
Figure 4
System architecture diagram. API: application programming interface; FHIR: Fast Healthcare Interoperability Resources; HL7: Health Level 7; RESTFUL: representational state transfer.
Figure 5
Figure 5
The screenshots of DDC19’s patient mobile terminal app.
Figure 6
Figure 6
The screenshots of DDC19’s doctor mobile terminal app.
Figure 7
Figure 7
The ROC curve of the dynamic risk stratification model. ROC: receiver operating characteristic.

Similar articles

Cited by

References

    1. Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020 Jan 30;:1. doi: 10.1001/jama.2020.1097. https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2020.1097 - DOI - DOI - PubMed
    1. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. World Health Organization. 2020. Mar 11, [2020-03-11]. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-re....
    1. WHO coronavirus disease (COVID-19) dashboard. World Health Organization. 2020. [2020-04-29]. https://covid19.who.int/
    1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020 May;109:102433. doi: 10.1016/j.jaut.2020.102433. http://europepmc.org/abstract/MED/32113704 - DOI - PMC - PubMed
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3. - DOI - PMC - PubMed

Publication types

LinkOut - more resources