Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2020 Jun 16;17(6):e1003130.
doi: 10.1371/journal.pmed.1003130. eCollection 2020 Jun.

Clinical and epidemiological characteristics of pediatric SARS-CoV-2 infections in China: A multicenter case series

Affiliations
Observational Study

Clinical and epidemiological characteristics of pediatric SARS-CoV-2 infections in China: A multicenter case series

Che Zhang et al. PLoS Med. .

Abstract

Background: As of April 18, 2020, over 2,000,000 patients had been diagnosed with coronavirus disease-2019 (COVID-19) globally, and more than 140,000 deaths had been reported. The clinical and epidemiological characteristics of adult patients have been documented recently. However, information on pediatric patients is limited. We describe the clinical and epidemiological characteristics of pediatric patients to provide valuable insight into the early diagnosis and assessment of COVID-19 in children.

Methods and findings: This retrospective, observational study involves a case series performed at 4 hospitals in West China. Thirty-four pediatric patients with COVID-19 were included from January 27 to February 23, 2020. The final follow-up visit was completed by March 16, 2020. Clinical and epidemiological characteristics were analyzed on the basis of demographic data, medical history, laboratory tests, radiological findings, and treatment information. Data analysis was performed for 34 pediatrics patients with COVID-19 aged from 1 to 144 months (median 33.00, interquartile range 10.00-94.25), among whom 14 males (41%) were included. All the patients in the current study presented mild (18%) or moderate (82%) forms of COVID-19. A total of 48% of patients were noted to be without a history of exposure to an identified source. Mixed infections of other respiratory pathogens were reported in 16 patients (47%). Comorbidities were reported in 6 patients (18%). The most common initial symptoms were fever (76%) and cough (62%). Expectoration (21%), vomiting (12%), and diarrhea (12%) were also reported in a considerable portion of cases. A substantial increase was detected in serum amyloid A for 17 patients (among 20 patients with available data; 85%) and in high-sensitivity C-reactive protein for 17 patients (among 29 patients with available data; 59%), whereas a decrease in prealbumin was noticed in 25 patients (among 32 patients with available data; 78%). In addition, significant increases in the levels of lactate dehydrogenase and α-hydroxybutyrate dehydrogenase were detected in 28 patients (among 34 patients with available data; 82%) and 25 patients (among 34 patients with available data; 74%), respectively. Patchy lesions in lobules were detected by chest computed tomographic scans in 28 patients (82%). Ground-glass opacities, which were a typical feature in adults, were rare in pediatric patients (3%). Rapid radiologic progression and a late-onset pattern of lesions in the lobules were also noticed. Lesions in lobules still existed in 24 (among 32 patients with lesions; 75%) patients that were discharged, although the main symptoms disappeared a few days after treatment. All patients were discharged, and the median duration of hospitalization was 10.00 (8.00-14.25) days. The current study was limited by the small sample size and a lack of dynamic detection of inflammatory markers.

Conclusions: Our data systemically presented the clinical and epidemiological features, as well as the outcomes, of pediatric patients with COVID-19. Stratified analysis was performed between mild and moderate cases. The findings offer new insight into early identification and intervention in pediatric patients with COVID-19.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. The clinical process and data analysis diagram.
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Fig 2
Fig 2. Distribution of cases confirmed with SARS-CoV-2 infection over time.
The first patient was diagnosed with SARS-CoV-2 infection on January 27. The daily confirmed cases were increased with time and still went up when the recruitment was cut off on February 23. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Fig 3
Fig 3. Typical features of CT images of pediatric patients with COVID-19.
(A) Patchy shadows of high density in lobule were detected by initial CT images for Pt 1 on admission (on February 1, 2020), whereas no abnormal findings were detected for Pt 2 (on February 5, 2020). (B) Notable progression of lesions was detected for both Pt 1 (on February 6, 2020, day 5 after admission) and Pt 2 (on February 9, 2020, day 4 after admission).(C) The lesions in lobules still existed at discharge for Pt 1 (on February 12, 2020, day 12 after treatment) and Pt 2 (on February 15, 2020, day 11 after treatment). Black arrows point to patchy shadows of high density in lobules. CT, computed tomography; Pt, patient.
Fig 4
Fig 4. Outcomes of the patients.
The duration of the main symptom recovery and the time required for patients to test negative for SARS-CoV-2 RNA are shown as the median (IQR). The dynamic changes in terms of the number of cases among normal, abnormal, and recovered patients are shown to present the progression of radiologic findings. CT, computed tomography; d, days; IQR, interquartile range; Pt, patient; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

References

    1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. Epub 2020 Feb 28. 10.1056/NEJMoa2002032 . - DOI - PMC - PubMed
    1. WHO [Internet]. Novel coronavirus (2019-nCoV) situation report-11 [cited 2020 Apr 18]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/2....
    1. WHO [Internet]. Coronavirus disease 2019 (COVID-19) situation report-89 [cited 2020 Apr 19]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/2....
    1. Zhu N, Zhang DY, Wang WL, Li XW, Yang B, Song JD, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733. 10.1056/NEJMoa2001017 - DOI - PMC - PubMed
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. 10.1016/S0140-6736(20)30183-5 - DOI - PMC - PubMed

Publication types

MeSH terms