Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun 12;25(12):2735.
doi: 10.3390/molecules25122735.

Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential

Affiliations
Review

Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential

Syed Amir Ashraf et al. Molecules. .

Abstract

Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine. Cordyceps contains various bioactive components, out of which, cordycepin is considered most vital, due to its utmost therapeutic as well as nutraceutical potential. Moreover, the structure similarity of cordycepin with adenosine makes it an important bioactive component, with difference of only hydroxyl group, lacking in the 3' position of its ribose moiety. Cordycepin is known for various nutraceutical and therapeutic potential, such as anti-diabetic, anti-hyperlipidemia, anti-fungal, anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anticancer, antiviral, hepato-protective, hypo-sexuality, cardiovascular diseases, antimalarial, anti-osteoporotic, anti-arthritic, cosmeceutical etc. which makes it a most valuable medicinal mushroom for helping in maintaining good health. In this review, effort has been made to bring altogether the possible wide range of cordycepin's nutraceutical potential along with its pharmacological actions and possible mechanism. Additionally, it also summarizes the details of cordycepin based nutraceuticals predominantly available in the market with expected global value. Moreover, this review will attract the attention of food scientists, nutritionists, pharmaceutical and food industries to improve the use of bioactive molecule cordycepin for nutraceutical purposes with commercialization to aid and promote healthy lifestyle, wellness and wellbeing.

Keywords: Chinese medicine; Cordyceps; DongChongXiaCao; anti-diabetic; anti-hyperlipidemia; bioactive compound; cordycepin; immunomodulator; medicinal mushroom; nutraceutical.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of some known and potent bioactive compounds in Cordyceps. (A) Cordycepin (B) Adenosine (C) Cordycepic acid (D) Ergosterol (E) Structure of (a) and (b). (a) Cordyceamides A (b) Cordyceamides B (F) Linoleic acid (G) Oleic acid (H) Palmitic acid.
Figure 2
Figure 2
Chemical structures of some known and potent bioactive compounds in Cordyceps. (A) Stearic acid (B) N-acetyl muramic acid (C) Hypoxanthine (D) Nephthaquinone (E) Dipliconic acid (F) Myriocin (G) Cordyheptapeptide A (H) Cicadapeptin 1.
Figure 3
Figure 3
Pictorial representation of Cordyceps therapeutic potential in general.
Figure 4
Figure 4
(A) Possible mechanism of cordycepin for its anti-diabetic activity (B) Possible mechanism of cordycepin in regulation of fat metabolism in hyperlipidemia [47].
Figure 5
Figure 5
Expected global nutraceutical market by 2025 with China, India, Tibet and Nepal as global leaders for production and extraction of cordycepin [144].

References

    1. Zhou X., Gong Z., Su Y., Lin J., Tang K. Cordyceps fungi: Natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol. 2009;61:279–291. doi: 10.1211/jpp.61.03.0002. - DOI - PubMed
    1. Yue K., Ye M., Zhou Z., Sun W., Lin X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013;65:474–493. doi: 10.1111/j.2042-7158.2012.01601.x. - DOI - PubMed
    1. Tuli H.S., Sharma A.K., Sandhu S.S., Kashyap D. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 2013;93:863–869. doi: 10.1016/j.lfs.2013.09.030. - DOI - PubMed
    1. Dong C., Guo S., Wang W., Liu X. Cordyceps industry in China. Mycology. 2015;6:121–129. doi: 10.1080/21501203.2015.1043967. - DOI - PMC - PubMed
    1. Tuli H.S., Kashyap D., Sharma A.K. Cordycepin: A Cordyceps Metabolite with Promising Therapeutic Potential. In: Mérillon J.-M., Ramawat K.G., editors. Fungal Metabolites. Springer International Publishing; Cham, Switzerland: 2017. pp. 761–782.

MeSH terms

LinkOut - more resources