Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod
- PMID: 32546702
- PMCID: PMC7298037
- DOI: 10.1038/s41598-020-66779-z
Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod
Abstract
As scientific and technical knowledge advances, research on biomedical micro-electromechanical systems (bio-MEMS) is also developing towards lab-on-a-chip (LOC) devices. A digital microfluidic (DMF) system specialized for an electrowetting- on-dielectric (EWOD) mechanism is a promising technique for such point-of-care systems. EWOD microfluidic biochemical analytical systems provide applications over a broad range in the lab-on-a-chip field. In this report, we treated extraction of cell-free DNA (cf-DNA) at a small concentration from a mouse embryo culture medium (2.5 days & 3.5 days) with electro-wetting on a dielectric (EWOD) platform using bio-reagents of micro-scale quantity. For such extraction, we modified a conventional method of genomic-DNA (g-DNA) extraction using magnetic beads (MB). To prove that extraction of cf-DNA with EWOD was accomplished, as trials we extracted designed-DNA (obtained from Chang Gung Memorial Hospital (CGMH), Taiwan which shows properties similar to that of cf-DNA). Using that designed DNA, extraction with both conventional and EWOD methods has been performed; the mean percentage of extraction with both methods was calculated for a comparison. From the cycle threshold (Ct) results with a quantitative polymerase chain reaction (q-PCR), the mean extraction percentages were obtained as 14.8 percent according to the conventional method and 23 percent with EWOD. These results show that DNA extraction with EWOD appears promising. The EWOD extraction involved voltage 100 V and frequency 2 kHz. From this analysis, we generated a protocol for an improved extraction percentage on a EWOD chip and performed cf-DNA extraction from an embryo-culture medium (KSOM medium) at 3.5 and 2.5 days. The mean weight obtained for EWOD-extracted cf-DNA is 0.33 fg from the 3.5-day sample and 31.95 fg from the 2.5-day sample. All these results will pave a new path towards a renowned lab-on-a-chip concept.
Conflict of interest statement
The authors declare no competing interests.
Figures







References
-
- Hung, P.-Y., Jiang, P.-S., Lee, E.-F., Fan, S.-K. & Lu, Y.-W. J. M. T. Genomic DNA extraction from whole blood using a digital microfluidic (DMF) platform with magnetic beads. 23, 313–320 (2017).
-
- Rojeab, A. Y. In Proceedings of World Academy of Science, Engineering and Technology. 1342 (Citeseer).
-
- Hawkins, T. DNA purification and isolation using magnetic particles. ed: U.S. Patent No 5,705,628, Google Patents, 1998.
-
- Vergauwe, N. et al. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. 21, 054026 (2011).
-
- Shah, G. J. & Kim, C.-J. C. J. J. o. M. S. Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics. 18, 363–375 (2009).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous