Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun 16;11(1):79.
doi: 10.1186/s13244-020-00885-4.

Imaging diagnosis of metastatic breast cancer

Affiliations
Review

Imaging diagnosis of metastatic breast cancer

Filippo Pesapane et al. Insights Imaging. .

Abstract

Numerous imaging modalities may be used for the staging of women with advanced breast cancer. Although bone scintigraphy and multiplanar-CT are the most frequently used tests, others including PET, MRI and hybrid scans are also utilised, with no specific recommendations of which test should be preferentially used. We review the evidence behind the imaging modalities that characterise metastases in breast cancer and to update the evidence on comparative imaging accuracy.

Keywords: Bone metastases; Breast cancer; Cancer staging; Oncology; Positron-emission tomography; Radiology.

PubMed Disclaimer

Conflict of interest statement

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Figures

Fig. 1
Fig. 1
Planar bone scan versus SPECT. Images from a planar bone scan (a) and views from a single-photon emission computerised tomography (SPECT) through the thoracic (b) and cervical (c) spine in a 56-year-old woman with breast cancer. Subtle abnormal tracer accumulation is present at the root of the left neck on the planar bone scan (black arrow) with normal accumulation within the urinary tract and at the injection site (a). SPECT-CT demonstrates corresponding uptake in right transverse process of C7 (c white arrow) but additional uptake in the left scapula (b white arrow) not visible on the planar images alone
Fig. 2
Fig. 2
Isodense liver metastases not visualised on CT identified using MRI. Images from a portal venous phase CT (a), arterial (b) and portal venous (c) phase T1-W post-contrast MRI and b-750 diffusion-weighted MRI (d) through the liver in a 46-year-old woman with breast cancer and deranged liver function. The liver appears normal on both CT and T1-W post-contrast MRI but multiple high signal foci are present throughout the liver (white arrows) on the diffusion-weighted sequence in keeping with diffuse liver metastases
Fig. 3
Fig. 3
Morphological appearances of lung metastases. Maximum intensity projection (MIP) CT thorax (a), and portal venous phase CT thorax using mediastinal windows (b) and portal venous phase CT on lung windows (c, d and e) in a 62-year-old woman with differing morphological appearances of metastatic breast cancer to the lungs. The MIP CT demonstrates multiple rounded lung metastases (a), a mass lesion simulating lung cancer (b), irregular spiculated metastases (c), endo- and peribronchial infiltration (d) and lymphangitis carcinomatosis (e)
Fig. 4
Fig. 4
Hypervascular liver metastases on MRI. Liver MRI in a 52-year-old woman with breast cancer demonstrates multiple slightly T1 hyperintense lesions in the liver on the T1-W image (a) which show increased enhancement in portovenous phase (b) and impeded diffusion on b750 DWI (c)
Fig. 5
Fig. 5
Cerebral manifestations of breast cancer. Post-contrast T1-W MRI in a 58-year-old woman with breast cancer demonstrates intracerebral metastases (a), dural metastasis (b) and leptomeningeal disease (c)
Fig. 6
Fig. 6
Comparison of NaF and FDG PET-CT In the same 65-year-old woman with metastatic breast cancer a CT (a) shows increased sclerosis in the left sacrum, increased tracer uptake of NaF PET in left sacrum and also in both ilium (b) but disease activity less well seen on FDG PET (c)
Fig. 7
Fig. 7
Evaluation of activity of bone disease on bone scan versus WB-MRI with diffusion. Bone scan (a), CT (b) and WBMRI with diffusion (c and d) and T1-W (e) in a 55-year-old woman with breast cancer post-treatment. The bone scan shows no significant abnormality (a), the CT shows foci of bone sclerosis in the pelvis with a visible lesion in the left posterior ilium (b). The lesions demonstrate low signal on the T1-W image (e) and high signal on DWI and intermediate ADC in keeping with disease
Fig. 8
Fig. 8
WBDWI in bone disease following chemotherapy. WB-MRI in a 59-year-old woman with breast cancer. 900 MIP before (a) and after (b) chemotherapy as well as b-900 and ADC maps pre (c and d) and post (e and f) chemotherapy demonstrate a right 12th rib lesion on with high DWI signal and low ADC on the pretreatment study (white arrow d) and complete response of the lesion after treatment (e and f)

References

    1. Tan W, Yang M, Yang H, Zhou F, Shen W. Predicting the response to neoadjuvant therapy for early-stage breast cancer: tumor-, blood-, and imaging-related biomarkers. Cancer Manag Res. 2018;10:4333–4347. - PMC - PubMed
    1. National Comprehensive Cancer Network. Clinical practice guidelines in oncology for breast cancer. In. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp, 2012
    1. Howard BE, Phillips J, Miller K, et al. SWIFT-Review: a text-mining workbench for systematic review. Syst Rev. 2016;5:87. - PMC - PubMed
    1. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–1474. - PubMed
    1. Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67:93–99. - PubMed

LinkOut - more resources