Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;61(3):379-389.
doi: 10.1007/s13353-020-00564-6. Epub 2020 Jun 16.

The genetic diversity of group-1 homoeologs and characterization of novel LMW-GS genes from Chinese Xinjiang winter wheat landraces (Triticum aestivum L.)

Affiliations

The genetic diversity of group-1 homoeologs and characterization of novel LMW-GS genes from Chinese Xinjiang winter wheat landraces (Triticum aestivum L.)

Xinkun Hu et al. J Appl Genet. 2020 Sep.

Abstract

Group-1 homoelog genes in wheat genomes encode storage proteins and are the major determinants of wheat product properties. Consequently, understanding the genetic diversity of group-1 homoelogs and genes encoding storage proteins, especially the low-molecular-weight glutenins (LMW-GSs), within wheat landrace genomes is necessary to further improve the quality of modern wheat crops. The genetic diversity of group-1 homoelogs in 75 Xinjiang winter wheat landraces was evaluated by Diversity Arrays Technology (DArT) markers. These data were used to select 15 landraces for additional LMW-GS gene isolation. The genetic similarity coefficients among landraces were highly similar regardless if considering the diversity markers on 1A, 1B, and 1D chromosomes individually or using all of the markers together. These similarities were evinced by the generation of four similar cluster dendrograms that comprised 11-15 landrace groups, regardless of the dataset used to generate the dendrograms. A total of 105 LMW-GS sequences corresponding to 79 unique genes were identified overall by using primers designed to target Glu-A3 and Glu-B3 loci, and 54 mature proteins were predicted from the unique LMW-GS genes. Nine novel chimeric LMW-GS genes were also identified, of which, one was recombinant for -i/-m, one for -s/-m, and seven for -m/-m parent genes, respectively. Phylogenetic analysis separated all of the LMW-GSs into three clades that were supported by moderate bootstrap values (> 70%). The clades corresponded to LMW-GS genes primarily harboring different N-terminals. These results provide useful information for better understanding the evolutionary genetics of the important Glu-3 locus of wheat, and they also provide new novel gene targets that can potentially be exploited to improve wheat quality.

Keywords: Chimeric genes; Chinese endemic wheats; Evolutionary relationships; Low-molecular-weight glutenins (LMW-GSs); Xinjiang wheat landraces.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Beom HR, Kim JS, Jang YR, Lim SH, Kim CK, Lee CK, Lee JY (2018) Proteomic analysis of low-molecular-weight glutenin subunits and relationship with their genes in a common wheat variety. 3. Biotech 8:56
    1. Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 96:743–750
    1. Cloutier S, Rampitsch C, Penner GA, Lukow OM (2001) Cloning and expression of a LMW-i glutenin gene. J Cereal Sci 33:143–154
    1. Cong H, Takata K, Zong YF, Ikeda TM, Yanaka M, Nagamine T, FujimakiH (2005) Novel high molecular weight glutenin subunits at the Glu-D1 locus in wheat landraces from the Xinjiang district of China and relationship with winter habit. Breed Sci 55:459–463
    1. Cong H, Takata K, Ikeda TM, Yanaka M, Fujimaki H, Nagamine T (2007) Characterization of a novel high-molecular-weight glutenin subunit pair 2.6 + 12 in common wheat landraces in the Xinjiang Uygur autonomous district of China. Breed Sci 57:253–255

LinkOut - more resources