Cerebral Blood Flow-Guided Manipulation of Arterial Blood Pressure Attenuates Hippocampal Apoptosis After Asphyxia-Induced Cardiac Arrest in Rats
- PMID: 32552439
- PMCID: PMC7670514
- DOI: 10.1161/JAHA.120.016513
Cerebral Blood Flow-Guided Manipulation of Arterial Blood Pressure Attenuates Hippocampal Apoptosis After Asphyxia-Induced Cardiac Arrest in Rats
Abstract
Background In most post-cardiac arrest patients, the autoregulation mechanism of cerebral blood flow (CBF) is dysregulated. We examined whether recovery of CBF by adjusting mean arterial pressure mitigates post-cardiac arrest neuronal damage. Methods and Results Wistar rats that underwent 8-minute asphyxia-induced cardiac arrest and resuscitation were computer-randomized to norepinephrine or control groups. The CBF was measured at the dorsal hippocampal CA1 region of the left hemisphere. In the norepinephrine group, the mean arterial pressure was adjusted to recover CBF to 80% to 100% of baseline. Twenty-four hours following resuscitation, neurological outcomes were assessed, and brain tissues and blood samples were harvested for neuronal apoptosis and injury assessment. Thirty resuscitated rats were randomized into 2 groups, each containing 12 rats that completed the experiments. Norepinephrine infusion effectively prevented posthyperemia hypoperfusion and recovered CBF to pre-arrest baseline levels; a moderate positive linear correlation between mean arterial pressure and CBF during this period was also observed (P<0.001). There were no significant between-group differences in neurological recovery. In the norepinephrine group compared with the control group, upregulated cleaved caspase-3 protein expression in brain tissue determined by Western blot was reduced (P=0.02) and the densities of apoptotic cells in hippocampal CA1 and CA3 regions determined by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick-end labeling were decreased (P<0.001). No significant differences in serum neuron-specific enolase or S100β levels were detected between the 2 groups. Conclusions CBF recovery demonstrated neuroprotective effects by reducing activation of cerebral apoptosis and number of apoptotic neurons. However, these effects did not significantly improve clinical neurological function, necessitating further investigation.
Keywords: apoptosis; blood pressure; cardiac arrest; cerebral auto‐regulation; cerebral blood flow; neurological outcome.
Figures
References
-
- Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out‐of‐hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–1487. - PubMed
-
- Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Böttiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, et al. Post‐cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79:350–379. - PubMed
-
- Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004;30:2126–2128. - PubMed
-
- Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VRM, Deakinet CD, Bottiger BW, Friberg H, Sunde K, Sandroni C. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post‐resuscitation care 2015: section 5 of the European Resuscitation Council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–222. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
