Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 1:256:117970.
doi: 10.1016/j.lfs.2020.117970. Epub 2020 Jun 15.

Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug

Affiliations

Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug

Claudia Guadalupe Benítez-Cardoza et al. Life Sci. .

Abstract

Aims: The COVID-19 disease caused by the SARS-CoV-2 has become a pandemic and there are no effective treatments that reduce the contagion. It is urgent to propose new treatment options, which are more effective in the interaction between viruses and cells. In this study was to develop a search for new pharmacological compounds against the angiotensin-converting enzyme 2 (ACE2), to inhibit the interaction with SARS-CoV-2.

Materials and methods: Docking, virtual screening using almost 500,000 compounds directed to interact in the region between the residues (Gln24, Asp30, His34, Tyr41, Gln42, Met82, Lys353, and Arg357) in ACE2. The average of ΔGbinding, the standard deviation value and the theoretical toxicity from compounds were analyzed.

Key findings: 20 best compounds directed to interact in ACE2 with a high probability to be safe in humans, validated by web servers of prediction of ADME and toxicity (ProTox-II and PreADMET), to difficult the interaction between ACE2 and region binding domain (RBD) of SARS-CoV-2.

Significance: In this study, 20 compounds were determined by docking focused on the region of interaction between ACE2 and RBD of SARS-CoV-2 was carried out. The compounds are publicly available to validate the effect in in vitro tests.

Keywords: ACE2; COVID-19; Drug by docking; Inhibitors of RBD; SARS-CoV-2.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
ACE2 (blue) shows residues Gln24, Asp30, His34, Tyr41, Gln42, Met82, Lys353 and Arg357 (green), as region chosen for docking. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

References

    1. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. - DOI - PMC - PubMed
    1. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D.S.C., Du B., Li L., Zeng G., Yuen K.-Y., Chen R., Tang C., Wang T., Chen P., Xiang J., Li S., Wang J., Liang Z., Peng Y., Wei L., Liu Y., Hu Y., Peng P., Wang J., Liu J., Chen Z., Li G., Zheng Z., Qiu S., Luo J., Ye C., Zhu S., Zhong N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2002032. - DOI - PMC - PubMed
    1. Calligari P., Bobone S., Ricci G., Bocedi A. Molecular investigation of SARS–CoV-2 proteins and their interactions with antiviral drugs. Viruses. 2020;12:445. doi: 10.3390/v12040445. - DOI - PMC - PubMed
    1. Huang J., Song W., Huang H., Sun Q. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19. J. Clin. Med. 2020;9:1131. doi: 10.3390/jcm9041131. - DOI - PMC - PubMed
    1. Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., Wang Q., Xu Y., Li M., Li X., Zheng M., Chen L., Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 2020;10:766–788. doi: 10.1016/j.apsb.2020.02.008. - DOI - PMC - PubMed

Substances