Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;582(7812):379-383.
doi: 10.1038/s41586-020-2360-3. Epub 2020 Jun 17.

Emergent constraint on Arctic Ocean acidification in the twenty-first century

Affiliations
Free article

Emergent constraint on Arctic Ocean acidification in the twenty-first century

Jens Terhaar et al. Nature. 2020 Jun.
Free article

Abstract

The ongoing uptake of anthropogenic carbon by the ocean leads to ocean acidification, a process that results in a reduction in pH and in the saturation state of biogenic calcium carbonate minerals aragonite (Ωarag) and calcite (Ωcalc)1,2. Because of its naturally low Ωarag and Ωcalc (refs. 2,3), the Arctic Ocean is considered the region most susceptible to future acidification and associated ecosystem impacts4-7. However, the magnitude of projected twenty-first century acidification differs strongly across Earth system models8. Here we identify an emergent multi-model relationship between the simulated present-day density of Arctic Ocean surface waters, used as a proxy for Arctic deep-water formation, and projections of the anthropogenic carbon inventory and coincident acidification. By applying observations of sea surface density, we constrain the end of twenty-first century Arctic Ocean anthropogenic carbon inventory to 9.0 ± 1.6 petagrams of carbon and the basin-averaged Ωarag and Ωcalc to 0.76 ± 0.06 and 1.19 ± 0.09, respectively, under the high-emissions Representative Concentration Pathway 8.5 climate scenario. Our results indicate greater regional anthropogenic carbon storage and ocean acidification than previously projected3,8 and increase the probability that large parts of the mesopelagic Arctic Ocean will be undersaturated with respect to calcite by the end of the century. This increased rate of Arctic Ocean acidification, combined with rapidly changing physical and biogeochemical Arctic conditions9-11, is likely to exacerbate the impact of climate change on vulnerable Arctic marine ecosystems.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Haugan, P. M. & Drange, H. Effects of CO2 on the ocean environment. Energy Convers. Manage. 37, 1019–1022 (1996). - DOI
    1. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005). - DOI - PubMed
    1. Steinacher, M., Joos, F., Frolicher, T. L., Plattner, G. K. & Doney, S. C. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6, 515–533 (2009). - DOI
    1. Fabry, V. J., McClintock, J. B., Mathis, J. T. & Grebmeier, J. M. Ocean acidification at high latitudes: the bellweather. Oceanography 22, 160–171 (2009). - DOI
    1. Gattuso, J.-P. & Hansson, L. Ocean Acidification (Oxford Univ. Press, 2011).

Publication types