Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation
- PMID: 32559637
- PMCID: PMC7646541
- DOI: 10.1016/j.conb.2020.02.011
Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation
Abstract
Over the past decade, genetically encoded fluorescent biosensors that report metabolic changes have become valuable tools for understanding brain metabolism. These sensors have been targeted to specific brain regions and cell types in different organisms to track multiple metabolic processes at single cell (and subcellular) resolution. Here, we review genetically encoded biosensors used to study metabolism in the brain. We particularly focus on the principles needed to use these sensors quantitatively while avoiding false inferences from variations in sensor fluorescence that arise from differences in expression level or environmental influences such as pH or temperature.
Copyright © 2020. Published by Elsevier Ltd.
Figures

Similar articles
-
Shining light on signaling and metabolic networks by genetically encoded biosensors.Curr Opin Plant Biol. 2005 Dec;8(6):574-81. doi: 10.1016/j.pbi.2005.09.015. Epub 2005 Sep 26. Curr Opin Plant Biol. 2005. PMID: 16188489 Free PMC article. Review.
-
Quantitative Imaging of Genetically Encoded Fluorescence Lifetime Biosensors.Biosensors (Basel). 2023 Oct 19;13(10):939. doi: 10.3390/bios13100939. Biosensors (Basel). 2023. PMID: 37887132 Free PMC article. Review.
-
Functional principles of genetically encoded fluorescent biosensors for metabolism and their quantitative use.J Neurochem. 2024 May;168(5):496-505. doi: 10.1111/jnc.15878. Epub 2023 Jun 14. J Neurochem. 2024. PMID: 37314388 Review.
-
Fluorescent proteins and genetically encoded biosensors.Chem Soc Rev. 2023 Feb 20;52(4):1189-1214. doi: 10.1039/d2cs00419d. Chem Soc Rev. 2023. PMID: 36722390 Review.
-
Genetically Encoded Biosensors Based on Fluorescent Proteins.Sensors (Basel). 2021 Jan 25;21(3):795. doi: 10.3390/s21030795. Sensors (Basel). 2021. PMID: 33504068 Free PMC article. Review.
Cited by
-
Heterogeneous Expression of Nuclear Encoded Mitochondrial Genes Distinguishes Inhibitory and Excitatory Neurons.eNeuro. 2021 Aug 9;8(4):ENEURO.0232-21.2021. doi: 10.1523/ENEURO.0232-21.2021. Print 2021 Jul-Aug. eNeuro. 2021. PMID: 34312306 Free PMC article.
-
Abundance-biased codon diversification prevents recombination in AAV production and ensures robust in vivo expression of functional FRET sensors.Commun Biol. 2025 Aug 19;8(1):1244. doi: 10.1038/s42003-025-08677-6. Commun Biol. 2025. PMID: 40830588 Free PMC article.
-
Absolute measurement of fast and slow neuronal signals with fluorescence lifetime photometry at high temporal resolution.bioRxiv [Preprint]. 2025 Jan 12:2025.01.10.632162. doi: 10.1101/2025.01.10.632162. bioRxiv. 2025. PMID: 39829836 Free PMC article. Preprint.
-
A perspective on astrocyte regulation of neural circuit function and animal behavior.Glia. 2022 Aug;70(8):1554-1580. doi: 10.1002/glia.24168. Epub 2022 Mar 17. Glia. 2022. PMID: 35297525 Free PMC article.
-
Succinate Dehydrogenase loss causes cascading metabolic effects that impair pyrimidine biosynthesis.bioRxiv [Preprint]. 2025 Feb 19:2025.02.18.638948. doi: 10.1101/2025.02.18.638948. bioRxiv. 2025. PMID: 40027747 Free PMC article. Preprint.
References
-
- Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y-C, Campagnola L, Seeman SC, Yu J, et al.: Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 2019, 365:699–704. - PubMed
-
- Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R, et al.: High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods 2019, 16:649–657. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous