Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021;21(5):546-557.
doi: 10.2174/1871520620666200619181425.

Smart Nanocarriers for Targeted Cancer Therapy

Affiliations
Review

Smart Nanocarriers for Targeted Cancer Therapy

Chiara Martinelli. Anticancer Agents Med Chem. 2021.

Abstract

Cancer is considered one of the most threatening diseases worldwide. Although many therapeutic approaches have been developed and optimized for ameliorating patient's conditions and life expectancy, however, it frequently remains an incurable pathology. Notably, conventional treatments may reveal inefficient in the presence of metastasis development, multidrug resistance and inability to achieve targeted drug delivery. In the last decades, nanomedicine has gained a prominent role, due to many properties ascribable to nanomaterials. It is worth mentioning their small size, their ability to be loaded with small drugs and bioactive molecules and the possibility to be functionalized for tumor targeting. Natural vehicles have been exploited, such as exosomes, and designed, such as liposomes. Biomimetic nanomaterials have been engineered, by modification with biological membrane coating. Several nanoparticles have already entered clinical trials and some liposomal formulations have been approved for therapeutic applications. In this review, natural and synthetic nanocarriers functionalized for actively targeting cancer cells will be described, focusing on their advantages with respect to conventional treatments. Recent innovations related to biomimetic nanoparticles camouflaged with membranes isolated from different types of cells will be reported, together with their promising applications. Finally, a short overview on the latest advances in carrier-free nanomaterials will be provided.

Keywords: Smart nanocarriers; active targeting; biomimetic nanomaterials; cancer; clinical trials; targeted therapy.

PubMed Disclaimer

MeSH terms

LinkOut - more resources