Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 1:269:110797.
doi: 10.1016/j.jenvman.2020.110797. Epub 2020 May 22.

Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county

Affiliations

Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county

Zhong Zhuang et al. J Environ Manage. .

Abstract

Fertilizer application has greatly increased crop yield, however impurities in mineral or organic fertilizers, such as heavy metals, are being added to agricultural soils, which would pose a high risk for soil and crop production. 115 soil samples were collected from Quzhou, a typical agricultural county in the North China Plain, to investigate the total content of cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn) and chromium (Cr) in soils. The contamination levels and source apportionment of studied elements were explored by the pollution indices, multivariate statistical approaches and geostatistical analysis. The ranges of Cd, As, Pb, Ni, Cu, Zn and Cr were between 0.08 and 0.35, 5.34-15.9, 7.34-38.9, 12.9-61.3, 7.80-27.0, 31.4-154, and 17.0-50.5 mg/kg and with the mean values 0.16, 9.20, 16.0, 24.7, 17.6, 61.1, and 29.5 mg/kg, respectively. The studied area was slightly polluted mainly by Cd, and higher pollution was found in soils under vegetable crops. The application of mineral phosphate fertilizer and livestock manure were the main source of Cd and Zn, and other elements (As, Pb, Ni and Cu) might originate from soil parent materials. Scenario analyses were performed using the R programming language, based on the cadmium contents in mineral phosphate fertilizers and livestock manures. The results showed that the long-term application of phosphate fertilizers would lead to some Cd enrichment in soil without risk of substantial pollution. Compared to pure mineral fertilizers, the long-term application of blended fertilizers (30% livestock manures and 70% phosphate fertilizers) or livestock manures would incur a higher Cd pollution risk within a short period, with a maximum probability of Cd risk of 55.21%. Mitigation measurements and scientific agronomic practices should be developed to minimize the risk of potential toxic elements in agricultural soil.

Keywords: Agricultural soils; Heavy metals; Phosphate fertilizer; Risk analysis; Spatial distribution.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources