Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct:147:104246.
doi: 10.1016/j.micpath.2020.104246. Epub 2020 Jun 17.

The anti-adhesive and anti-invasive effects of recombinant azurin on the interaction between enteric pathogens (invasive/non-invasive) and Caco-2 cells

Affiliations

The anti-adhesive and anti-invasive effects of recombinant azurin on the interaction between enteric pathogens (invasive/non-invasive) and Caco-2 cells

Bita Bakhshi et al. Microb Pathog. 2020 Oct.

Abstract

Anti-adhesion therapy and anti-adhesin immunity are meant to diminish the interaction between pathogens and host tissues, either by prevention or by exclusion of bacterial adhesion and entrance to cells. Azurin is a scaffold protein possessing antiviral, antiparasitic, and anticancer activities. The purpose of the present study was to determine the effect of recombinant Azurin (rAzurin) on the adhesion and invasion capacity of invasive (Shigella sonnei, Shigella flexneri, Campylobacter jejuni) and non-invasive (Vibrio cholerae) enteric bacteria to cells. The non-toxic dose of rAzurin and the best MOI (Multiplicity of Infection) of bacterial species was assessed by MTT assay. Bacterial species were used at MOIs of 20:1 and Azurin was applied at the concentrations of 5 and 25 μg/mL and added to Caco-2 cells in competition and replacement assay to assess the anti-adhesion and anti-invasion properties of rAzurin. The protein caused significant decrease in the adhesion rate of S. sonnei, S. flexneri, C. jejuni, and V. cholerae strains to Caco-2 cells by 43, 39, 72, and 38% in competition and 45, 46, 75, and 48% in replacement assays, respectively. Also, S. sonnei, S. flexneri, and C. jejuni strains invasion rate was reduced to 50, 50, and 70% in anti-invasion assay, respectively. The inhibitory effect of Azurin against C. jejuni and V. cholerae strains adhesion was more significant (p < .001) compared to Shigella spp. (p < .05) which may be due to smaller size of the former bacteria. On the contrary, in invasion assay, rAzurin showed a greater inhibitory effect against Shigella spp. (p < .001) compared to C. jejuni (p < .05), which may probably be due to the interaction of rAzurin with several effectors or ligands, involved in Shigella invasion and internalization. The findings of the present study opens new insights of rAzurin as a new and potent candidate for reducing or probably preventing enteric bacterial attachment, invasion, and pathogenesis.

Keywords: Anti-adhesive; Anti-invasive; Azurin; Campylobacter jejuni; Enteric bacteria; Shigella spp.; Vibrio cholerae.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources