Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov;1864(11):129671.
doi: 10.1016/j.bbagen.2020.129671. Epub 2020 Jun 19.

Coating of magnetic nanoparticles affects their interactions with model cell membranes

Affiliations

Coating of magnetic nanoparticles affects their interactions with model cell membranes

Michalis Lazaratos et al. Biochim Biophys Acta Gen Subj. 2020 Nov.

Abstract

Background: The use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.

Methods: Differential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.

Results: DSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.

Conclusions: Results of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.

General significance: Understanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.

Keywords: Cancer; Differential scanning calorimetry; Drug delivery; Magnetite; Molecular dynamics simulations; Nanoparticles.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Publication types

LinkOut - more resources