Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar-Apr;52(2):108-116.
doi: 10.4103/ijp.IJP_400_18. Epub 2020 Jun 3.

Carthamus tinctorius L. Extract ameliorates cerebral ischemia-reperfusion injury in rats by regulating matrix metalloproteinases and apoptosis

Affiliations

Carthamus tinctorius L. Extract ameliorates cerebral ischemia-reperfusion injury in rats by regulating matrix metalloproteinases and apoptosis

Li-Li Chang et al. Indian J Pharmacol. 2020 Mar-Apr.

Abstract

We investigate the protective effect of Carthamus tinctorius L. (CTL, also known as Honghua in China or Safflower) on cerebral ischemia-reperfusion and explored the possible mechanisms on regulating apoptosis and matrix metalloproteinases (MMPs). High-performance liquid chromatography method with diode array detection analysis was established to analyze the components of CTL. Middle cerebral artery occlusion rats model was established to evaluate Neurological Function Score and hematoxylin-eosin staining, as well as triphenyltetrazolium was used to examine the infarction area ratio. Transferase-mediated dUTP nick-end labeling was performed for the apoptosis. Apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), Bax and Caspase3, and MMPs-related MMP2, MMP9, tissue inhibitor of metalloproteinases 1 (TIMP1) in ischemic brain, were assayed by Western blot, reverse transcription polymerase chain reaction, and immunohistochemistry. The data showed that CTL (2, 4 g crude drug/kg/d) treatment could significantly reduce the ischemic damage in brain tissue and improve a significant neurological function score. In addition, CTL could also attenuate apoptosis degree of brain tissues and regulate Bcl-2, Bax, and Caspase 3 and also have a significant decrease on MMP-9 expression, followed by a significant increase of TIMP1 protein expression. These findings indicated that regulation of CTL on apoptosis and MMPs contributed to its protective effect on ischemia/reperfusion injury.

Keywords: Apoptosis; Carthamus tinctorius L.; cerebral ischemia-reperfusion; matrix metalloprotein.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
Pictorial diagram of middle cerebral artery occlusion rat model
Figure 2
Figure 2
High-performance liquid chromatography for Carthamus tinctorius L. (a) and reference compounds (b) hydroxysafflor yellow A (1) and safflower yellow B (2)
Figure 3
Figure 3
Neurological function of Carthamus tinctorius L. on cerebral ischemia in rats. (A) Infarction behavior of rats; (B) Hematoxylin and eosin staining for brain tissues of cerebral ischemic rats, a. Normal, b. Sham, c. Model, d. positive drug Nimodipine group (7.53 mg/kg/d), e. high dose Carthamus tinctorius L. group (4 g crude drug/kg/d), f. low dose Carthamus tinctorius L. group (2 g crude drug/kg/d); (C) Neurological deficit scores of cerebral ischemic rats on the 1st day, 7th day, and 14th day; Magnification × 200. Data are presented as means ± standard deviation (n = 8). *P < 0.05, **P < 0.01, 7th day or 14th day versus 1st day
Figure 4
Figure 4
Effect of Carthamus tinctorius L. on infarction aera ratio of rats after cerebral ischemia. (A) Triphenyltetrazolium for brain tissues; (B) infarction aera ratio. Data are presented as means ± standard deviation (n = 6). ##P < 0.01, vs. Sham; *P < 0.05, **P < 0.01, versus model
Figure 5
Figure 5
Regulation of Carthamus tinctorius L. on apoptosis of brain tissues of rats after cerebral ischemia. (A) Transferase-mediated dUTP nick-end labeling assay for apoptosis; (B) Western blotting for apoptosis-related factor levels including B-cell lymphoma-2, Bax, and Caspase3; (C) Reverse transcription polymerase chain reaction for messenger RNA levels of B-cell lymphoma-2, Bax and Caspase3. Nimodipine of 7.53 mg/kg/d was used as positive drug. Data are presented as means ± standard deviation (n = 6). #P < 0.05, ##P < 0.01, versus Sham; *P < 0.05, **P < 0.01, versus model
Figure 6
Figure 6
Effect of Carthamus tinctorius L. on matrix metalloproteinases in brain tissue of cerebral ischemic rats. (A) Immunohistochmeistry for matrix metalloproteinase-9 level; (B) Western blotting for matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases 1 protein expressions. Data are presented as means ± standard deviation (n = 6). #P < 0.05, ##P < 0.01, versus Sham; *P < 0.05, **P < 0.01, versus model

Similar articles

Cited by

References

    1. Ueno Y, Tanaka R, Yamashiro K, Miyamoto N, Hira K, Kurita N, et al. Age stratification and impact of eicosapentaenoic acid and docosahexaenoic acid to arachidonic acid ratios in ischemic stroke patients. J Atheroscler Thromb. 2018;25:593–605. - PMC - PubMed
    1. Cho SK, Sohn J, Cho J, Noh J, Ha KH, Choi YJ, et al. Effect of socioeconomic status and underlying disease on the association between ambient temperature and ischemic stroke. Yonsei Med J. 2018;59:686–92. - PMC - PubMed
    1. Ling C, Liang J, Zhang C, Li R, Mou Q, Qin J, et al. Synergistic effects of salvianolic acid B and puerarin on cerebral ischemia reperfusion injury. Molecules. 2018;23:564. - PMC - PubMed
    1. Chen HS, Chen X, Li WT, Shen JG. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery. Acta Pharmacol Sin. 2018;39:669–82. - PMC - PubMed
    1. Velimirović M, Jevtić Dožudić G, Selaković V, Stojković T, Puškaš N, Zaletel I, et al. Effects of vitamin D3 on the NADPH oxidase and matrix metalloproteinase 9 in an animal model of global cerebral ischemia. Oxid Med Cell Longev. 2018;2018:3273654. - PMC - PubMed

Publication types

MeSH terms