Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr;24(4):245-251.
doi: 10.5005/jp-journals-10071-23385.

A Comparative Study of the Diagnostic and Prognostic Utility of Soluble Urokinase-type Plasminogen Activator Receptor and Procalcitonin in Patients with Sepsis and Systemic Inflammation Response Syndrome

Affiliations

A Comparative Study of the Diagnostic and Prognostic Utility of Soluble Urokinase-type Plasminogen Activator Receptor and Procalcitonin in Patients with Sepsis and Systemic Inflammation Response Syndrome

Ankita Sharma et al. Indian J Crit Care Med. 2020 Apr.

Abstract

Introduction: Differentiation between sepsis and systemic inflammation response syndrome (SIRS) remains a diagnostic challenge for clinicians as both may have similar clinical presentation. A quick and accurate diagnostic tool that can discriminate between these two conditions would aid in appropriate therapeutic decision-making. This prospective study was conducted to evaluate the diagnostic and prognostic utility of soluble urokinase-type plasminogen activator receptor (suPAR) and procalcitonin (PCT) in sepsis and SIRS patients.

Materials and methods: Eighty-eight patients were enrolled, of which 29 were SIRS and 59 were sepsis patients. The levels of suPAR and PCT were measured on the day of admission (day 1), day 3, and day 7.

Results: The levels of suPAR and PCT were significantly higher (p = 0.05 and p < 0.001, respectively) in sepsis group as compared to the SIRS group. The soluble urokinase-type plasminogen activator receptor was a better diagnostic tool in predicting sepsis over PCT [area under curve (AUC) 0.89 vs 0.82] on day 1. The best cutoff for suPAR was 5.58 pg/mL [96% sensitivity and 90% negative predictive value (NPV)] and the best cut-off for PCT was 1.96 ng/mL (93.1% sensitivity and 80% NPV). However, PCT had better prognostic trends (p = 0.006) to identify nonsurvivors in sepsis group.

Conclusion: Our findings suggest that both suPAR and PCT can be used as potential test tools to differentiate between SIRS and sepsis. Procalcitonin showed significant prognostic trends to identify nonsurvivors. The soluble urokinase-type plasminogen activator receptor showed better diagnostic potential than PCT on day 1.

Clinical significance: Both suPAR and PCT can be used as surrogate biomarkers to distinguish sepsis from SIRS. Procalcitonin showing a significant prognostic trend to identify nonsurvivors can help the clinicians to take relevant clinical decisions. Also, the use of biomarkers like PCT and suPAR could reduce the inappropriate use of antibiotics in noninfective SIRS.

How to cite this article: Sharma A, Ray S, Mamidipalli R, Kakar A, Chugh P, Jain R, et al. A Comparative Study of the Diagnostic and Prognostic Utility of Soluble Urokinase-type Plasminogen Activator Receptor and Procalcitonin in Patients with Sepsis and Systemic Inflammation Response Syndrome. Indian J Crit Care Med 2020;24(4):245-251.

Keywords: Procalcitonin; Sepsis; Soluble urokinase-type plasminogen activator receptor; Systemic inflammation response syndrome.

PubMed Disclaimer

Conflict of interest statement

Source of support: ViroGates Conflict of interest: None

Figures

Flowchart 1
Flowchart 1
Patients enrolled in the study
Fig. 1
Fig. 1
Median values of soluble urokinase-type plasminogen activator receptor and procalcitonin
Fig. 2
Fig. 2
Receiver–operating characteristic curve for soluble urokinase-type plasminogen activator receptor and procalcitonin to differentiate sepsis from systemic inflammation response syndrome
Fig. 3
Fig. 3
Source of infection in the enrolled patients

Similar articles

Cited by

References

    1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United states from 1979 through 2000. N Engl J Med. 2003;348(16):1546–1554. doi: 10.1056/NEJMoa022139. DOI: - DOI - PubMed
    1. Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med. 2007;33(4):606–618. doi: 10.1007/s00134-006-0517-7. DOI: - DOI - PubMed
    1. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35(5):1244–1250. doi: 10.1097/01.CCM.0000261890.41311.E9. DOI: - DOI - PubMed
    1. Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011;(62):1–8. - PubMed
    1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. EPIC II group of investigators. International study of the prevalence and outcomes of infection in intensive care units. J Am Med Assoc. 2009;302(21):2323–2329. doi: 10.1001/jama.2009.1754. DOI: - DOI - PubMed

LinkOut - more resources