Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 9;14(3):031301.
doi: 10.1063/5.0010800. eCollection 2020 May.

The promise of single-cell mechanophenotyping for clinical applications

Affiliations

The promise of single-cell mechanophenotyping for clinical applications

Molly Kozminsky et al. Biomicrofluidics. .

Abstract

Cancer is the second leading cause of death worldwide. Despite the immense research focused in this area, one is still not able to predict disease trajectory. To overcome shortcomings in cancer disease study and monitoring, we describe an exciting research direction: cellular mechanophenotyping. Cancer cells must overcome many challenges involving external forces from neighboring cells, the extracellular matrix, and the vasculature to survive and thrive. Identifying and understanding their mechanical behavior in response to these forces would advance our understanding of cancer. Moreover, used alongside traditional methods of immunostaining and genetic analysis, mechanophenotyping could provide a comprehensive view of a heterogeneous tumor. In this perspective, we focus on new technologies that enable single-cell mechanophenotyping. Single-cell analysis is vitally important, as mechanical stimuli from the environment may obscure the inherent mechanical properties of a cell that can change over time. Moreover, bulk studies mask the heterogeneity in mechanical properties of single cells, especially those rare subpopulations that aggressively lead to cancer progression or therapeutic resistance. The technologies on which we focus include atomic force microscopy, suspended microchannel resonators, hydrodynamic and optical stretching, and mechano-node pore sensing. These technologies are poised to contribute to our understanding of disease progression as well as present clinical opportunities.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Mechanical stimuli and mechanical properties in the metastatic cascade.
FIG. 2.
FIG. 2.
Technologies that have been applied in the mechanophenotyping of clinical samples and single cells within primary tissues. (a) Piezoresistive microcantilever. Reprinted with permission from Pandya et al. Biosens. Bioelectron., 63, 414–424 (2014), Copyright 2014 Elsevier. (b) Suspended microchannel resonator. Bagnall et al., Sci. Rep., 5, 18542 (2015). Copyright 2015 Author(s), licensed under a Creative Commons Attribution (CC BY 4.0) License. (c) Microfluidic hydrodynamic stretching. Reproduced with permission from Gossett et al. Proc. Natl. Acad. Sci. U.S.A. 109(20), 7630–7635 (2012) Copyright 2012 Author(s). (d) Shear-induced deformability cytometry. Toepfner et al. eLife, 7, e29213 (2018), Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC BY) License. (e) Mechano node-pore sensing. Kim et al. Microsyst. Nanoeng., 4, 17091 (2018), Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC BY 4.0) License.

Similar articles

Cited by

References

    1. Fejerman L., Stern M. C., John E. M., Torres-Mejia G., Hines L. M., Wolff R. K., Baumgartner K. B., Giuliano A. R., Ziv E., Perez-Stable E. J., and Slattery M. L., “Interaction between common breast cancer susceptibility variants, genetic ancestry, and nongenetic risk factors in Hispanic women,” Cancer Epidemiol. Biomarkers Prev. 24(11), 1731–1738 (2015). 10.1158/1055-9965.EPI-15-0392 - DOI - PMC - PubMed
    1. LaBarge M. A., Mora-Blanco E. L., Samson S., and Miyano M., “Breast cancer beyond the Age of mutation,” Gerontology 62(4), 434–442 (2016). 10.1159/000441030 - DOI - PMC - PubMed
    1. Fresques T., Zirbes A., Shalabi S., Samson S., Preto S., Stampfer M. R., and LaBarge M. A., “Breast tissue biology expands the possibilities for prevention of age-related breast cancers,” Front. Cell Dev. Biol. 7, 174 (2019). 10.3389/fcell.2019.00174 - DOI - PMC - PubMed
    1. Willoughby A., Andreassen P. R., and Toland A. E., “Genetic testing to guide risk-stratified screens for breast cancer,” J. Pers. Med. 9(1), 15 (2019). 10.3390/jpm9010015 - DOI - PMC - PubMed
    1. Huyghe J. R., Bien S. A., Harrison T. A., Kang H. M., Chen S., Schmit S. L., Conti D. V., Qu C., Jeon J., Edlund C. K., Greenside P., Wainberg M., Schumacher F. R., Smith J. D., Levine D. M., Nelson S. C., Sinnott-Armstrong N. A., Albanes D., Alonso M. H., Anderson K., Arnau-Collell C., Arndt V., Bamia C., Banbury B. L., Baron J. A., Berndt S. I., Bezieau S., Bishop D. T., Boehm J., Boeing H., Brenner H., Brezina S., Buch S., Buchanan D. D., Burnett-Hartman A., Butterbach K., Caan B. J., Campbell P. T., Carlson C. S., Castellvi-Bel S., Chan A. T., Chang-Claude J., Chanock S. J., Chirlaque M. D., Cho S. H., Connolly C. M., Cross A. J., Cuk K., Curtis K. R., de la Chapelle A., Doheny K. F., Duggan D., Easton D. F., Elias S. G., Elliott F., English D. R., Feskens E. J. M., Figueiredo J. C., Fischer R., FitzGerald L. M., Forman D., Gala M., Gallinger S., Gauderman W. J., Giles G. G., Gillanders E., Gong J., Goodman P. J., Grady W. M., Grove J. S., Gsur A., Gunter M. J., Haile R. W., Hampe J., Hampel H., Harlid S., Hayes R. B., Hofer P., Hoffmeister M., Hopper J. L., Hsu W. L., Huang W. Y., Hudson T. J., Hunter D. J., Ibanez-Sanz G., Idos G. E., Ingersoll R., Jackson R. D., Jacobs E. J., Jenkins M. A., Joshi A. D., Joshu C. E., Keku T. O., Key T. J., Kim H. R., Kobayashi E., Kolonel L. N., Kooperberg C., Kuhn T., Kury S., Kweon S. S., Larsson S. C., Laurie C. A., Le Marchand L., Leal S. M., Lee S. C., Lejbkowicz F., Lemire M., Li C. I., Li L., Lieb W., Lin Y., Lindblom A., Lindor N. M., Ling H., Louie T. L., Mannisto S., Markowitz S. D., Martin V., Masala G., McNeil C. E., Melas M., Milne R. L., Moreno L., Murphy N., Myte R., Naccarati A., Newcomb P. A., Offit K., Ogino S., Onland-Moret N. C., Pardini B., Parfrey P. S., Pearlman R., Perduca V., Pharoah P. D. P., Pinchev M., Platz E. A., Prentice R. L., Pugh E., Raskin L., Rennert G., Rennert H. S., Riboli E., Rodriguez-Barranco M., Romm J., Sakoda L. C., Schafmayer C., Schoen R. E., Seminara D., Shah M., Shelford T., Shin M. H., Shulman K., Sieri S., Slattery M. L., Southey M. C., Stadler Z. K., Stegmaier C., Su Y. R., Tangen C. M., Thibodeau S. N., Thomas D. C., Thomas S. S., Toland A. E., Trichopoulou A., Ulrich C. M., Van Den Berg D. J., van Duijnhoven F. J. B., Van Guelpen B., van Kranen H., Vijai J., Visvanathan K., Vodicka P., Vodickova L., Vymetalkova V., Weigl K., Weinstein S. J., White E., Win A. K., Wolf C. R., Wolk A., Woods M. O., Wu A. H., Zaidi S. H., Zanke B. W., Zhang Q., Zheng W., Scacheri P. C., Potter J. D., Bassik M. C., Kundaje A., Casey G., Moreno V., Abecasis G. R., Nickerson D. A., Gruber S. B., Hsu L., and Peters U., “Discovery of common and rare genetic risk variants for colorectal cancer,” Nat. Genet. 51(1), 76–87 (2019). 10.1038/s41588-018-0286-6 - DOI - PMC - PubMed