Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 8;5(23):13926-13939.
doi: 10.1021/acsomega.0c01331. eCollection 2020 Jun 16.

Levoglucosenone and Its Pseudoenantiomer iso-Levoglucosenone as Scaffolds for Drug Discovery and Development

Affiliations

Levoglucosenone and Its Pseudoenantiomer iso-Levoglucosenone as Scaffolds for Drug Discovery and Development

Xin Liu et al. ACS Omega. .

Abstract

The bioderived platform molecule levoglucosenone (LGO, 1) and its readily prepared pseudoenantiomer (iso-LGO, 2) have each been subjected to α-iodination reactions with the product halides then being engaged in palladium-catalyzed Ullmann cross-coupling reactions with various bromonitropyridines. The corresponding α-pyridinylated derivatives such as 11 and 24, respectively, are produced as a result. Biological screening of such products reveals that certain of them display potent and selective antimicrobial and/or cytotoxic properties. In contrast, the azaindoles obtained by reductive cyclization of compounds such as 11 and 12 are essentially inactive in these respects. Preliminary mode-of-action studies are reported.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Structures of LGO (1) and iso-LGO (2) and their scalable modes of production.
Scheme 1
Scheme 1. Synthetic Sequence Leading from LGO (1) to Test Compounds 918
Scheme 2
Scheme 2. Synthetic Sequence Leading from iso-LGO (2) to Test Compounds 2130
Figure 2
Figure 2
Structures of the products 3133 arising from the reductive cyclization of cross-coupling product 9 using iron in various acidic media.
Scheme 3
Scheme 3. Reaction of the α-Arylated and LGO-Derived Enone 10 with l-Cysteine Leading to the Isolable Adducts 34 and 35

References

    1. For useful points of entry into the literature on the preparation and medicinal chemistry of azaindoles, see

    2. Song J. J.; Reeves J. T.; Gallou F.; Tan Z.; Yee N. K.; Senanayake C. H. Organometallic methods for the synthesis and functionalization of azaindoles. Chem. Soc. Rev. 2007, 36, 1120–1132. 10.1039/b607868k. - DOI - PubMed
    3. Mérour J.-Y.; Routier S.; Suzenet F.; Joseph B. Recent advances in the synthesis and properties of 4-, 5-, 6- or 7-azaindoles. Tetrahedron 2013, 69, 4767–4834. 10.1016/j.tet.2013.03.081. - DOI
    4. Pires M. J. D.; Poeira D. L.; Purificaçao S. I.; Marques M. M. B. Synthesis of Substituted 4-, 5-, 6- and 7-Azaindoles from Aminopyridines via a Cascade C-N Cross-Coupling/Heck Reaction. Org. Lett. 2016, 18, 3250–3253. 10.1021/acs.orglett.6b01500. - DOI - PubMed
    5. Philips A.; Cunningham C.; Naran K.; Kesharwanu T. Synthesis of 3-Halo-7-azaindoles through a 5-endo-dig Electrophilic Cyclization Reaction. Synlett 2019, 30, 1246–1252. 10.1055/s-0037-1611827. - DOI
    6. Zard S. Z. The xanthate route to pyridines. Tetrahedron 2020, 76, 13080210.1016/j.tet.2019.130802. - DOI
    1. Mérour J.-V.; Buron F.; Plé K.; Bonnet P.; Routier S. The Azaindole Framework in the Design of Kinase Inhibitors. Molecules 2014, 19, 19935–19979. 10.3390/molecules191219935. - DOI - PMC - PubMed
    2. Daydé-Cazals B.; Singer M.; Feneyrolles C.; Bestgen B.; Gassiot F.; Spenlinhauer A.; Warnault P.; Van Hijfte N.; Bornjini N.; Chevé G.; Yasri A. Rational Design, Synthesis, and Biological Evaluation of 7-Azaindole Derivatives as Potent Focused Multi-Targeted Kinase Inhibitors. J. Med. Chem. 2016, 59, 3886–3905. 10.1021/acs.jmedchem.6b00087. - DOI - PubMed
    3. Irie T.; Sawa M. 7-Azaindole: A Versatile Scaffold for Developing Kinase Inhibitors. Chem. Pharm Bull. 2018, 66, 29–36. 10.1248/cpb.c17-00380. - DOI - PubMed
    4. Machiraju P. K.; Yedla P.; Gubbala S. P.; Bohari T.; Abdul J. K. V.; Shili X.; Patel R.; Chittireddy V. R. R.; Boppana K.; Jagarlapudi S. A. R. P.; Neamatic N.; Syed R.; Amanchy R. Identification, synthesis and evaluation of CSF1R inhibitors using fragment based drug design. Comput. Biol. Chem. 2019, 80, 374–383. 10.1016/j.compbiolchem.2019.04.015. - DOI - PubMed
    1. Clark M.; Ledeboer M.; Davies I.; Byrn R. A.; Jones S. M.; Perola E.; Tsai A.; Jacobs M.; Nti-Addae K.; Bandarage U. K.; Boyd M. J.; Bethiel R. S.; Court J. J.; Deng H.; Duffy J. P.; Dorsch W. A.; Farmer L. J.; Gao H.; Gu W.; Jackson K.; Jacobs D. H.; Kennedy J. M.; Ledford B.; Liang J.; Maltais F.; Murcko M.; Wang T.; Wannamaker M. W.; Bennett H. B.; Leeman J. R.; McNeil C.; Taylor W. P.; Memmott C.; Jiang M.; Rijnbrand R.; Bral C.; Germann U.; Nezami A.; Zhang Y.; Salituro F. G.; Bennani Y. L.; Charifson P. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014, 57, 6668–6678. 10.1021/jm5007275. - DOI - PubMed
    2. Bandarage U. P.; Clark M. P.; Perola E.; Gao H.; Jacobs M. D.; Tsai A.; Gillespie J.; Kennedy J. M.; Maltais F.; Lededoer M. W.; Davies I.; Gu W.; Byrn R. A.; Addae K. N.; Bennett H.; Leeman J. R.; Jones S. M.; O’Brien C.; Memmott C.; Bennani Y.; Charifson P. S. Novel 2-Substituted 7-Azaindole and 7-Azaindazole Analogues as Potential Antiviral Agents for the Treatment of Influenza. ACS Med. Chem. Lett. 2017, 8, 261–265. 10.1021/acsmedchemlett.6b00487. - DOI - PMC - PubMed
    3. Verdonck S.; Pu S.-Y.; Sorrell F. J.; Elkins J. M.; Froeyen M.; Gao L.-J.; Prugar L. I.; Dorosky D. E.; Brannan J. M.; Barouch-Bentov R.; Knall S.; Dye J. M.; Herdewijn P.; Einav S.; De Jonghe S. Synthesis and Structure-Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3-b]pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity. J. Med. Chem. 2019, 62, 5810–5831. 10.1021/acs.jmedchem.9b00136. - DOI - PMC - PubMed
    1. Goundry W. R. F.; Dai K.; Gonzalez M.; Legg D.; O’Kearney-McMullan A.; Morrison J.; Stark A.; Siedlecki P.; Tomlin P.; Yang J. Development and Scale-up of a Route to ATR Inhibitor AZD6738. Org. Process Res. Dev. 2019, 23, 1333–1342. 10.1021/acs.oprd.9b00075. - DOI
    1. Gluszok S.; Goossens L.; Depreux P.; Barbry D.; Hénichart J.-P. Synthesis of the 7-Azaindole (1H-Pyrrolo[2,3-b]pyridine) Analogous to Cannabimimetic JHW 200. Synth. Commun. 2006, 36, 2797–2805. 10.1080/00397910600767504. - DOI
    2. Immadi S. S.; Dopart R.; We Z.; Fu B.; Kendall D. A.; Lu D. Exploring 6-Azaindole and 7-Azaindole Rings for Developing Cannabinoid Receptor 1 Allosteric Modulators. Cannabis Cannabinoid Res. 2018, 3, 252–258. 10.1089/can.2018.0046. - DOI - PMC - PubMed