TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations
- PMID: 32573499
- PMCID: PMC7456254
- DOI: 10.1172/JCI137660
TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations
Abstract
NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1β signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.
Keywords: Inflammation; NF-kappaB; Oncogenes; Oncology; Protein kinases.
Conflict of interest statement
Figures










References
-
- Algül H, Adler G, Schmid RM. NF-kappaB/Rel transcriptional pathway: implications in pancreatic cancer. Int J Gastrointest Cancer. 2002;31(1–3):71–78. - PubMed
-
- Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res. 1999;5(1):119–127. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous