Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 23;10(1):10130.
doi: 10.1038/s41598-020-66686-3.

Biased-corrected richness estimates for the Amazonian tree flora

Hans Ter Steege  1   2 Paulo I Prado  3 Renato A F de Lima  4   5 Edwin Pos  6 Luiz de Souza Coelho  7 Diogenes de Andrade Lima Filho  7 Rafael P Salomão  8   9 Iêda Leão Amaral  7 Francisca Dionízia de Almeida Matos  7 Carolina V Castilho  10 Oliver L Phillips  11 Juan Ernesto Guevara  12   13 Marcelo de Jesus Veiga Carim  14 Dairon Cárdenas López  15 William E Magnusson  16 Florian Wittmann  17   18 Maria Pires Martins  7 Daniel Sabatier  19 Mariana Victória Irume  7 José Renan da Silva Guimarães  14 Jean-François Molino  19 Olaf S Bánki  4 Maria Teresa Fernandez Piedade  20 Nigel C A Pitman  21 José Ferreira Ramos  7 Abel Monteagudo Mendoza  22 Eduardo Martins Venticinque  23 Bruno Garcia Luize  24 Percy Núñez Vargas  25 Thiago Sanna Freire Silva  26 Evlyn Márcia Moraes de Leão Novo  27 Neidiane Farias Costa Reis  28 John Terborgh  29   30 Angelo Gilberto Manzatto  31 Katia Regina Casula  28 Euridice N Honorio Coronado  11   32 Juan Carlos Montero  7   33 Alvaro Duque  34 Flávia R C Costa  7 Nicolás Castaño Arboleda  15 Jochen Schöngart  20 Charles Eugene Zartman  7 Timothy J Killeen  35 Beatriz S Marimon  36 Ben Hur Marimon-Junior  36 Rodolfo Vasquez  22 Bonifacio Mostacedo  37 Layon O Demarchi  20 Ted R Feldpausch  11   38 Julien Engel  19   39 Pascal Petronelli  40 Chris Baraloto  39 Rafael L Assis  41 Hernán Castellanos  42 Marcelo Fragomeni Simon  43 Marcelo Brilhante de Medeiros  43 Adriano Quaresma  20 Susan G W Laurance  30 Lorena M Rincón  7 Ana Andrade  44 Thaiane R Sousa  7 José Luís Camargo  44 Juliana Schietti  7 William F Laurance  30 Helder Lima de Queiroz  45 Henrique Eduardo Mendonça Nascimento  7 Maria Aparecida Lopes  46 Emanuelle de Sousa Farias  47   48 José Leonardo Lima Magalhães  49   50 Roel Brienen  11 Gerardo A Aymard C  51 Juan David Cardenas Revilla  7 Ima Célia Guimarães Vieira  9 Bruno Barçante Ladvocat Cintra  52 Pablo R Stevenson  53 Yuri Oliveira Feitosa  54 Joost F Duivenvoorden  55 Hugo F Mogollón  56 Alejandro Araujo-Murakami  57 Leandro Valle Ferreira  9 José Rafael Lozada  58 James A Comiskey  59   60 José Julio de Toledo  61 Gabriel Damasco  62 Nállarett Dávila  63 Aline Lopes  20   64 Roosevelt García-Villacorta  65   66 Freddie Draper  39   67 Alberto Vicentini  16 Fernando Cornejo Valverde  68 Jon Lloyd  69 Vitor H F Gomes  70   71 David Neill  72 Alfonso Alonso  60 Francisco Dallmeier  60 Fernanda Coelho de Souza  11   16 Rogerio Gribel  7 Luzmila Arroyo  57 Fernanda Antunes Carvalho  16   73 Daniel Praia Portela de Aguiar  20 Dário Dantas do Amaral  9 Marcelo Petratti Pansonato  5   7 Kenneth J Feeley  74   75 Erika Berenguer  76   77 Paul V A Fine  62 Marcelino Carneiro Guedes  78 Jos Barlow  77 Joice Ferreira  50 Boris Villa  79 Maria Cristina Peñuela Mora  80 Eliana M Jimenez  81 Juan Carlos Licona  33 Carlos Cerón  82 Raquel Thomas  83 Paul Maas  4 Marcos Silveira  84 Terry W Henkel  85 Juliana Stropp  86 Marcos Ríos Paredes  87 Kyle G Dexter  88   89 Doug Daly  90 Tim R Baker  11 Isau Huamantupa-Chuquimaco  25 William Milliken  91 Toby Pennington  38   89 J Sebastián Tello  92 José Luis Marcelo Pena  93 Carlos A Peres  94 Bente Klitgaard  95 Alfredo Fuentes  92   96 Miles R Silman  97 Anthony Di Fiore  98 Patricio von Hildebrand  99 Jerome Chave  100 Tinde R van Andel  4   101 Renato Richard Hilário  61 Juan Fernando Phillips  102 Gonzalo Rivas-Torres  103   104 Janaína Costa Noronha  105 Adriana Prieto  106 Therany Gonzales  107 Rainiellene de Sá Carpanedo  105 George Pepe Gallardo Gonzales  87 Ricardo Zárate Gómez  108 Domingos de Jesus Rodrigues  105 Egleé L Zent  109 Ademir R Ruschel  50 Vincent Antoine Vos  110 Émile Fonty  19   111 André Braga Junqueira  112 Hilda Paulette Dávila Doza  87 Bruce Hoffman  113 Stanford Zent  109 Edelcilio Marques Barbosa  7 Yadvinder Malhi  114 Luiz Carlos de Matos Bonates  7 Ires Paula de Andrade Miranda  7 Natalino Silva  115 Flávia Rodrigues Barbosa  105 César I A Vela  116 Linder Felipe Mozombite Pinto  87 Agustín Rudas  106 Bianca Weiss Albuquerque  20 Maria Natalia Umaña  117 Yrma Andreina Carrero Márquez  58 Geertje van der Heijden  118 Kenneth R Young  119 Milton Tirado  120 Diego F Correa  53   121 Rodrigo Sierra  120 Janaina Barbosa Pedrosa Costa  78 Maira Rocha  20 Emilio Vilanova Torre  122   123 Ophelia Wang  124 Alexandre A Oliveira  5 Michelle Kalamandeen  11   125 Corine Vriesendorp  21 Hirma Ramirez-Angulo  122 Milena Holmgren  126 Marcelo Trindade Nascimento  127 David Galbraith  11 Bernardo Monteiro Flores  128 Veridiana Vizoni Scudeller  129 Angela Cano  53   130 Manuel Augusto Ahuite Reategui  131 Italo Mesones  62 Cláudia Baider  5   132 Casimiro Mendoza  133   134 Roderick Zagt  135 Ligia Estela Urrego Giraldo  34 Cid Ferreira  7 Daniel Villarroel  57 Reynaldo Linares-Palomino  60 William Farfan-Rios  92   136 William Farfan-Rios  25 Luisa Fernanda Casas  53 Sasha Cárdenas  53 Henrik Balslev  137 Armando Torres-Lezama  122 Miguel N Alexiades  138 Karina Garcia-Cabrera  97 Luis Valenzuela Gamarra  22 Elvis H Valderrama Sandoval  139   140 Freddy Ramirez Arevalo  140 Lionel Hernandez  42 Adeilza Felipe Sampaio  28 Susamar Pansini  28 Walter Palacios Cuenca  141 Edmar Almeida de Oliveira  36 Daniela Pauletto  142 Aurora Levesley  11 Karina Melgaço  11 Georgia Pickavance  11
Affiliations

Biased-corrected richness estimates for the Amazonian tree flora

Hans Ter Steege et al. Sci Rep. .

Abstract

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Fit of SAD models to the species abundances from samples from the three ATDN data sets. Left column: observed frequencies of species in each abundance class (octaves, grey bars) and frequencies predicted by analytical Logseries (LS), truncated negative binomial (TNB) and Poisson-lognormal (PLN). Right column: rank-abundance plot in log-log scale of the abundances of species (gray) and the predicted abundances at each rank by the same three models.
Figure 2
Figure 2
Bias-corrected estimates of total species richness for each method and each data set. TNB, LS: upscaling from the fit of Truncated Negative Binomial and the analytical Logseries to abundances in the sample; LSE: linear extension of the distribution of estimated population sizes; ABC: approximated Bayesian Computation for estimated population sizes distribution. ABC and all bias corrections are derived from simulated samples with conspecific clumping from a logseries community. Bars depict bias-corrected 95% confidence intervals or similar (credible interval for ABC).
Figure 3
Figure 3
Extension of assumed logseries of estimated population sizes to predict the number of species in Amazonian forests. Grey dots in both panels are the estimated total population sizes of species recorded in the 2019 ATDN data set. The solid blue line in the main figure is the rank-abundance relationship predicted by a logseries with the average of estimates of number of species (15,874 spp). Dotted lines in the main panel delimit the rank-abundance for minimum and maximum of lower and upper limits 95% of the estimates. The lines in the inset panel are the mean and lower and upper bounds for the values of abundances estimates of the recorded species, also from averaging over all estimation methods.
Figure 4
Figure 4
Expected species-accumulation curves from simulated samples logseries with conspecific clumping based on the 2019 data set. The lines show simulated samples of a logseries with the mean (solid line) and lower-upper bounds (dotted lines) of the estimated number of species in the plot sample. Blue dots show the observed values for the three data sets.

References

    1. ter Steege H, et al. Hyperdominance in the Amazonian tree flora. Science. 2013;342:1243092. doi: 10.1126/science.1243092. - DOI - PubMed
    1. Fung T, Villain L, Chisholm RA. Analytical formulae for computing dominance from species-abundance distributions. Journal of Theoretical Biology. 2015;386:147–158. doi: 10.1016/j.jtbi.2015.09.011. - DOI - PubMed
    1. Ricklefs RE. How tree species fill geographic and ecological space in eastern North America. Annals of Botany. 2015;115:949–959. doi: 10.1093/aob/mcv029. - DOI - PMC - PubMed
    1. Cardoso D, et al. Amazon plant diversity revealed by a taxonomically verified species list. Proceedings of the National Academy of Sciences. 2017;114:10695–10700. doi: 10.1073/pnas.1706756114. - DOI - PMC - PubMed
    1. Harte J, Kitzes J. Inferring regional-scale species diversity from small-plot censuses. Plos One. 2015;10:e0117527. doi: 10.1371/journal. - DOI - PMC - PubMed

Publication types