Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2020 Jun 4:2020.06.04.135004.
doi: 10.1101/2020.06.04.135004.

Landscape and Selection of Vaccine Epitopes in SARS-CoV-2

Affiliations

Landscape and Selection of Vaccine Epitopes in SARS-CoV-2

Christof C Smith et al. bioRxiv. .

Update in

  • Landscape and selection of vaccine epitopes in SARS-CoV-2.
    Smith CC, Olsen KS, Gentry KM, Sambade M, Beck W, Garness J, Entwistle S, Willis C, Vensko S, Woods A, Fini M, Carpenter B, Routh E, Kodysh J, O'Donnell T, Haber C, Heiss K, Stadler V, Garrison E, Sandor AM, Ting JPY, Weiss J, Krajewski K, Grant OC, Woods RJ, Heise M, Vincent BG, Rubinsteyn A. Smith CC, et al. Genome Med. 2021 Jun 14;13(1):101. doi: 10.1186/s13073-021-00910-1. Genome Med. 2021. PMID: 34127050 Free PMC article.

Abstract

There is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE). Additionally, such vaccines can be rapidly manufactured in a distributed manner. In this study, we combine computational prediction of T cell epitopes, recently published B cell epitope mapping studies, and epitope accessibility to select candidate peptide vaccines for SARS-CoV-2. We begin with an exploration of the space of possible T cell epitopes in SARS-CoV-2 with interrogation of predicted HLA-I and HLA-II ligands, overlap between predicted ligands, protein source, as well as concurrent human/murine coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, viral source protein abundance, sequence conservation, coverage of high frequency HLA alleles and co-localization of CD4+ and CD8+ T cell epitopes. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering to select regions with surface accessibility, high sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. From 58 initial candidates, three B cell epitope regions were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we propose a set of SARS-CoV-2 vaccine peptides for use in subsequent murine studies and clinical trials.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Statement: None

Figures

Figure 1:
Figure 1:. Summary of B cell and CD4+/CD8+ epitope prediction workflows.
Pathways are colored by B cell (blue), human T cell (black), and murine T cell (red) epitope prediction workflows. Color bars represent proportions of epitopes derived from internal proteins (ORF), nucleocapsid phosphoprotein, and surface-exposed proteins (spike, membrane, envelope).
Figure 2:
Figure 2:. Landscape of SARS-CoV-2 MHC ligands.
(A&B) Selection criteria for (A) HLA-I and (B) HLA-II SARS-CoV-2 HLA ligand candidates. Scatterplot (bottom) shows predicted (x-axis) versus IEDB (y-axis) binding affinity, with horizontal line representing 500nM IEDB binding affinity and vertical line representing corresponding predicted binding affinity for 90% specificity in binding prediction. Histogram (top) shows all predicted SARS-CoV-2 HLA ligand candidates. (C) Landscape of predicted HLA ligands, showing nested HLA ligands comprising HLA-I and -II ligands with complete overlap (top), and LOESS fitted curve (span = 0.1) for HLA-I/II ligands by location along the SARS-CoV2 proteome (bottom). Red track represents SARS epitopes identified in literature review with sequence identity in SARS-CoV-2. Predicted HLA ligands with conserved sequences to this literature set are represented in the l ollipop plot with a red stick. (D) Summary of total number of predicted HLA-I/II ligands and nested HLA ligands. (E) Summary of nested HLA ligand coverage by protein, with raw counts (left) or counts normalized by protein length (right). (F) Summary of murine/human MHC ligand overlap. (G) Distribution of population frequencies among predicted HLA-I, -II, and nested HLA ligands.
Figure 3:
Figure 3:. Prediction of SARS-CoV-2 T cell epitopes.
(Top) Summary of predicted (left) and IEDB-defined (right) SARS-CoV-2 HLA ligands, showing proportions of each derivative protein. (Middle) Funnel plot representing counts of HLA-I (red text), HLA-II (blue text), and nested HLA (violet text) ligands along with proportions of HLA-I (top bar) and HLA-II (bottom bar) alleles at each filtering step. (Bottom) Summary of CD8+ (red, top), CD4+ (blue, bottom), and nested T cell epitopes (middle) after filtering criteria in S, M, and N proteins. Y-axis and size represent the population frequency of each CD8+ and CD4+ epitopes by circles. Middle track of diamonds represents overlaps between CD8+ and CD4+ epitopes, showing the overlap with greatest population frequency (size) for each region of overlap. Color of diamonds represents the proportion of overlap between CD4+ and CD8+ epitope sequences.
Figure 4:
Figure 4:. Selection of SARS-CoV-2 B cell epitope regions.
(A) SARS-CoV-2 linear B cell epitopes curated from epitope mapping studies. X-axis represents amino acid position along the SARS-CoV-2 spike protein, with labeled start sites. (B) Schematic for filtering criteria of B cell epitope candidates. (C) Spike protein amino acid sequence, with overlay of selection features prior to filtering. Polymorphic residues are red, glycosites are blue, accessible regions highlighted in yellow. The receptor binding domain (RBD), fusion peptide (FP), and HR1/HR2 regions are outlined. (D) Spike protein functional regions (RBD, FP, HR1/2) amino acid sequences, with residues colored by how many times they occur in identified epitopes. Selected accessible sub-sequences of known antibody epitopes highlighted in purple outline. (E) S protein trimer crystal structure with glycosylation, with final linear epitope regions highlighted by color.
Figure 5:
Figure 5:. T cell and B cell vaccine candidates.
(A) 27mer vaccine peptide sets selecting for best CD4+, CD8+, CD4+/CD8+, and B cell epitopes with HLA-I, HLA-II, and total population coverage. (B) Unified list of all selected 27mer vaccine peptides. Vaccine peptides containing predicted ligands for murine MHC alleles (H2-b and H2-d haplotypes) are indicated in their respective columns.

Similar articles

References

    1. Graham B. S. Advances in antiviral vaccine development. Immunol. Rev. 255, 230–242 (2013). - PMC - PubMed
    1. Hodgson J. The pandemic pipeline. Nat. Biotechnol. (2020) doi: 10.1038/d41587-020-00005-z - DOI - PubMed
    1. With record-setting speed, vaccine makers take their first shots at the new coronavirus. Science | AAAS https://www.sciencemag.org/news/2020/03/record-setting-speed-vaccine-mak... (2020).
    1. Tai W. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol. (2020) doi: 10.1038/s41423-020-0400-4 - DOI - PMC - PubMed
    1. Bolles M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011). - PMC - PubMed

Publication types