Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2020 Jun 11:2020.06.09.20126813.
doi: 10.1101/2020.06.09.20126813.

Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behavior, and Testing Identifies Contributors to Continued Disease Spread in the United States

Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behavior, and Testing Identifies Contributors to Continued Disease Spread in the United States

William E Allen et al. medRxiv. .

Update in

  • Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing.
    Allen WE, Altae-Tran H, Briggs J, Jin X, McGee G, Shi A, Raghavan R, Kamariza M, Nova N, Pereta A, Danford C, Kamel A, Gothe P, Milam E, Aurambault J, Primke T, Li W, Inkenbrandt J, Huynh T, Chen E, Lee C, Croatto M, Bentley H, Lu W, Murray R, Travassos M, Coull BA, Openshaw J, Greene CS, Shalem O, King G, Probasco R, Cheng DR, Silbermann B, Zhang F, Lin X. Allen WE, et al. Nat Hum Behav. 2020 Sep;4(9):972-982. doi: 10.1038/s41562-020-00944-2. Epub 2020 Aug 26. Nat Hum Behav. 2020. PMID: 32848231 Free PMC article.

Abstract

Despite social distancing and shelter-in-place policies, COVID-19 continues to spread in the United States. A lack of timely information about factors influencing COVID-19 spread and testing has hampered agile responses to the pandemic. We developed How We Feel, an extensible web and mobile application that aggregates self-reported survey responses, to fill gaps in the collection of COVID-19-related data. How We Feel collects longitudinal and geographically localized information on users' health, behavior, and demographics. Here we report results from over 500,000 users in the United States from April 2, 2020 to May 12, 2020. We show that self- reported surveys can be used to build predictive models of COVID-19 test results, which may aid in identification of likely COVID-19 positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation, as well as for household and community exposure, occupation, and demographics being strong risk factors for COVID-19. We further reveal factors for which users have been SARS-CoV-2 PCR tested, as well as the temporal dynamics of self- reported symptoms and self-isolation behavior in positive and negative users. These results highlight the utility of collecting a diverse set of symptomatic, demographic, and behavioral self- reported data to fight the COVID-19 pandemic.

PubMed Disclaimer

Publication types

LinkOut - more resources