Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 1;77(11):1155-1162.
doi: 10.1001/jamapsychiatry.2020.1689.

Predictive Modeling of Opioid Overdose Using Linked Statewide Medical and Criminal Justice Data

Affiliations

Predictive Modeling of Opioid Overdose Using Linked Statewide Medical and Criminal Justice Data

Brendan Saloner et al. JAMA Psychiatry. .

Abstract

Importance: Responding to the opioid crisis requires tools to identify individuals at risk of overdose. Given the expansion of illicit opioid deaths, it is essential to consider risk factors across multiple service systems.

Objective: To develop a predictive risk model to identify opioid overdose using linked clinical and criminal justice data.

Design, setting, and participants: A cross-sectional sample was created using 2015 data from 4 Maryland databases: all-payer hospital discharges, the prescription drug monitoring program (PDMP), public-sector specialty behavioral treatment, and criminal justice records for property or drug-associated offenses. Maryland adults aged 18 to 80 years with records in any of 4 databases were included, excluding individuals who died in 2015 or had a non-Maryland zip code. Logistic regression models were estimated separately for risk of fatal and nonfatal opioid overdose in 2016. Model performance was assessed using bootstrapping. Data analysis took place from February 2018 to November 2019.

Exposures: Controlled substance prescription fills and hospital, specialty behavioral health, or criminal justice encounters.

Main outcomes and measures: Fatal opioid overdose defined by the state medical examiner and 1 or more nonfatal overdoses treated in Maryland hospitals during 2016.

Results: There were 2 294 707 total individuals in the sample, of whom 42.3% were male (n = 970 019) and 53.0% were younger than 50 years (647 083 [28.2%] aged 18-34 years and 568 160 [24.8%] aged 35-49 years). In 2016, 1204 individuals (0.05%) in the sample experienced fatal opioid overdose and 8430 (0.37%) experienced nonfatal opioid overdose. In adjusted analysis, the factors mostly strongly associated with fatal overdose were male sex (odds ratio [OR], 2.40 [95% CI, 2.08-2.76]), diagnosis of opioid use disorder in a hospital (OR, 2.93 [95% CI, 2.17-3.80]), release from prison in 2015 (OR, 4.23 [95% CI, 2.10-7.11]), and receiving opioid addiction treatment with medication (OR, 2.81 [95% CI, 2.20-3.86]). Similar associations were found for nonfatal overdose. The area under the curve for fatal overdose was 0.82 for a model with hospital variables, 0.86 for a model with both PDMP and hospital variables, and 0.89 for a model that further added behavioral health and criminal justice variables. For nonfatal overdose, the area under the curve using all variables was 0.85.

Conclusions and relevance: In this analysis, fatal and nonfatal opioid overdose could be accurately predicted with linked administrative databases. Hospital encounter data had higher predictive utility than PDMP data. Model performance was meaningfully improved by adding PDMP records. Predictive models using linked databases can be used to target large-scale public health programs.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: All authors reported grants from the US Department of Justice Bureau of Justice Assistance during the conduct of the study. Drs Chang, Saloner, and Eisenberg also reported grants from the National Institute on Drug Abuse during the conduct of the study. Dr Eisenberg also reported grants from the Agency for Healthcare Research and Quality and the Arnold Foundation outside the submitted work. Dr Saloner also reported grants from the Arnold Foundation outside the submitted work. No other disclosures were reported.

References

    1. Hedegaard H, Minino A, Warner M Drug overdose deaths in the United States, 1999–2017. Published 2018. Accessed August 14, 2019. https://www.cdc.gov/nchs/data/databriefs/db329-h.pdf.
    1. National Center for Health Statistics Provisional Drug Overdose Death Counts. Published 2019. Accessed August 14, 2019. https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
    1. Saloner B, McGinty EE, Beletsky L, et al. . A public health strategy for the opioid crisis. Public Health Rep. 2018;133(1_suppl):24S-34S. doi:10.1177/0033354918793627 - DOI - PMC - PubMed
    1. Geissert P, Hallvik S, Van Otterloo J, et al. . High-risk prescribing and opioid overdose: prospects for prescription drug monitoring program-based proactive alerts. Pain. 2018;159(1):150-156. doi:10.1097/j.pain.0000000000001078 - DOI - PMC - PubMed
    1. Liang Y, Goros MW, Turner BJ. Drug overdose: differing risk models for women and men among opioid users with non-cancer pain. Pain Med. 2016;17(12):2268-2279. doi:10.1093/pm/pnw071 - DOI - PMC - PubMed

Publication types